Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Synthesis, isolation and application of a sila-ketenyl anion

Abstract

Ynolates or ketenyl anions, [RCCO], are negatively charged reactive intermediates, which can be generated in situ and used for divergent chemical transformations. Ynolates can react either at the oxygen or carbon centres or across the C–C triple bond, making them useful in various applications in organic synthesis. Heavier analogues of ynolates or ketenyl anions ([RECO], E = group 14 element), however, have not been isolated or studied. Here we report the synthesis, isolation and characterization of [K(18-crown-6)]+[(tBu3Si)SiCO], a silicon analogue of a ketenyl anion. [K(18-crown-6)]+[(tBu3Si)SiCO] is readily prepared through reaction of [K(18-crown-6)]+ coordinated silyl-radical anions with carbon monoxide, or by a reduction of a silyl-substituted silicon–carbonyl complex, [{(Me3Si)3Si}(tBu3Si)SiCO]. X-ray crystallographic and spectroscopic analyses coupled with quantum chemical calculations reveal that [K(18-crown-6)]+[(tBu3Si)SiCO] predominately displays sila-ketenyl anion character. [(tBu3Si)SiCO] was also demonstrated to be a competent ligand for a transition metal through reaction with Mo(CO)6.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Ynolates and sila-ynolates.
Fig. 2: Synthesis of a sila-ketenyl anion complex [K(18c6)][1].
Fig. 3: X-ray crystal structure of [K(18c6)][1].
Fig. 4: Bonding analysis of sila-ketenyl anion [1].
Fig. 5: Synthesis of sila-ketenyl–molybdenum complex [K(18c6)][5].

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the main text and its Supplementary Information. Crystallographic data for compounds [K(18c6)][1], 2, [K(18c6)][2′] and [K(18c6)][5] are available free of charge from the Cambridge Crystallographic Data Centre under references CCDC-2192074, CCDC-2192075, CCDC-2192076 and CCDC-2192077.

References

  1. Wu, G. & Huan, M. Organolithium reagents in pharmaceutical asymmetric processes. Chem. Rev. 106, 2596–2616 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Stolz, D. & Kazmaier, U. in The Chemistry of Metal Enolates (eds Zabicky, J. & Rappoport, Z.) Ch. 7 (Wiley, 2009).

  3. Shindo, M. Ynolate anions. Chem. Soc. Rev. 27, 367–374 (1998).

    Article  CAS  Google Scholar 

  4. Shindo, M. Synthetic uses of ynolates. Tetrahedron 63, 10–36 (2007).

    Article  CAS  Google Scholar 

  5. Shindo, M. & Mori, S. Torquoselective olefination of carbonyl compounds with ynolates: highly efficient stereoselective synthesis of tetrasubstituted alkenes.Synlett 15, 2231–2243 (2008).

    Article  Google Scholar 

  6. Timmermann, C. et al. Migratory insertion of isocyanide into a ketenyl-tungsten bond as key step in cyclization reactions. Chem. Sci. 13, 123–132 (2022).

    Article  CAS  Google Scholar 

  7. Schöllkopf, U. & Hoppe, I. Lithium phenylethynolate and its reaction with carbonyl compounds to give β-lactones. Angew. Chem. Int. Ed. 14, 765 (1975).

    Article  Google Scholar 

  8. Akai, S. et al. Reaction of ynolate anions derived from silylketenes with electrophiles: a facile preparation of silyl ynol ethers and functionalized silylketenes. J. Chem. Soc., Perkin. Trans. 1, 1705–1709 (1996).

    Article  Google Scholar 

  9. Kai, H., Iwamoto, K., Chatani, N. & Murai, S. Ynolates from the reaction of lithiosilyldiazomethane with carbon monoxide. New Ketenylation reactions. J. Am. Chem. Soc. 118, 7634–7635 (1996).

    Article  CAS  Google Scholar 

  10. Majumdar, M. et al. Reductive cleavage of carbon monoxide by a disilenide. Angew. Chem. Int. Ed. 54, 8746–8750 (2015).

    Article  CAS  Google Scholar 

  11. Jörges, M., Krischer, F. & Gessner, V. H. Transition metal-free ketene formation from carbon monoxide through isolable ketenyl anions. Science 378, 1331–1336 (2022).

    Article  PubMed  Google Scholar 

  12. Wei, R., Wang, X.-F., Ruiz, D. A. & Liu, L. L. Stable ketenyl anions via ligand exchange at an anionic carbon as powerful synthons. Angew. Chem. Int. Ed. https://doi.org/10.1002/anie.202219211 (2023).

  13. Schäfer-Bung, B. et al. Measurement and theoretical simulation of the HCCO anion photoelectron spectrum. J. Chem. Phys. 115, 1777–1788 (2001).

    Article  Google Scholar 

  14. Peng, J.-B., Geng, H.-Q. & Wu, X.-F. The chemistry of CO: carbonylation. Chem 5, 526–552 (2019).

    Article  CAS  Google Scholar 

  15. Herrmann, W. A. 100 years of metal carbonyls: a serendipitous chemical discovery of major scientific and industrial impact. J. Organomet. Chem. 383, 21–44 (1990).

    Article  Google Scholar 

  16. Fujimori, S. & Inoue, S. Carbon monoxide in main-group chemistry. J. Am. Chem. Soc. 144, 2034–2050 (2022).

    Article  CAS  PubMed  Google Scholar 

  17. Xu, M., Qu, Z.-w, Grimme, S. & Stephan, D. W. Lithium dicyclohexylamide in transition-metal-free Fischer−Tropsch chemistry. J. Am. Chem. Soc. 143, 634–638 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. Wang, Y. et al. Silicon-mediated selective homo- and heterocoupling of carbon monoxide. J. Am. Chem. Soc. 141, 626–634 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Xiong, Y., Yao, S., Szilvási, T., Ruzicka, A. & Driess, M. Homocoupling of CO and isocyanide mediated by a C,C′-bis(silylenyl)-substituted ortho-carborane. Chem.Commun. 56, 747–750 (2020).

    Article  CAS  Google Scholar 

  20. Protchenko, A. V. et al. Reduction of carbon oxides by an acyclic silylene: reductive coupling of CO. Angew. Chem. Int. Ed. 58, 1808–1812 (2019).

    Article  CAS  Google Scholar 

  21. Cowley, M. J., Huch, V. & Scheschkewitz, D. Donor–acceptor adducts of a 1,3-Disila-2-oxyallyl Zwitterion. Chem. Eur. J. 20, 9221–9224 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Cowley, M. J. et al. Carbonylation of cyclotrisilenes. Angew. Chem. Int. Ed. 52, 13247–13250 (2013).

    Article  CAS  Google Scholar 

  23. Ganesamoorthy, C. et al. A silicon-carbonyl complex stable at room temperature. Nat. Chem. 12, 608–614 (2020).

    Article  CAS  PubMed  Google Scholar 

  24. Reiter, D., Holzner, R., Porzelt, A., Frisch, P. & Inoue, S. Silylated silicon-carbonyl complexes as mimics of ubiquitous transition-metal carbonyls. Nat. Chem. 12, 1131–1135 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Jutzi, P. & Schröder, F.-W. Zur einschiebung von kohlenmonoxid zwischen element-lithium-bindungen II. Reaktion von trimethylsilyllithium mit kohlenmonoxid. J. Organomet. Chem. 24, C43–C44 (1970).

    Article  CAS  Google Scholar 

  26. Kratish, Y. et al. The reactions of carbon monoxide with silyl and silenyl lithium - synthesis and isolation of the first stable tetra-silyl di-ketyl biradical and 1-silaallenolate lithium. Angew. Chem. Int. Ed. 58, 18849–18853 (2019).

    Article  CAS  Google Scholar 

  27. Holzner, R., Reiter, D., Frisch, P. & Inoue, S. DMAP-stabilized bis(silyl)silylenes as versatile synthons for organosilicon compounds. RSC Adv. 10, 3402–3406 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Reiter, D. et al. Disilene-silylene interconversion: a synthetically accessible acyclic bis(silyl)silylene. J. Am. Chem. Soc. 141, 13536–13546 (2019).

    Article  CAS  PubMed  Google Scholar 

  29. Ishikawa, M. et al. Aluminum chloride catalyzed skeletal rearrangement of permethylated acyclic polysilanes. J. Am. Chem. Soc. 103, 4845–4850 (1981).

    Article  CAS  Google Scholar 

  30. Gau, D. et al. Synthesis and structure of a base-stabilized C-phosphino-Si-amino silyne. Angew. Chem. Int. Ed. 49, 6585–6588 (2010).

    Article  CAS  Google Scholar 

  31. Fischer, R. C. & Power, P. P. π-bonding and the lone pair effect in multiple bonds involving heavier main group elements: developments in the new millennium. Chem. Rev. 110, 3877–3923 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Holleman, A. F., Wiberg, E. & Wiberg, N. Lehrbuch der Anorganischen Chemie Vol. 102 (de Gruyter, 2007).

  33. Allen, F. H. et al. Tables of bond lengths determined by X-ray and neutron diffraction. Part 1. Bond lengths in organic compounds. J. Chem. Soc., Perkin Trans. 2, S1–S19 (1987).

    Article  Google Scholar 

  34. Ito, M., Shirakawa, E. & Takaya, H. Generation of silylethynolates via C-Si bond cleavage of disilylketenes induced by t-BuOK. Synlett 8, 1329–1331 (2002).

    Article  Google Scholar 

  35. Sung, K. & Tidwell, T. T. Disilanylketenes and -bisketenes. Organometallics 16, 78–85 (1997).

    Article  CAS  Google Scholar 

  36. Sergeieva, T., Mandal, D. & Andrada, D. M. Chemical bonding in silicon carbonyl complexes. Chem. Eur. J. 27, 10601–10609 (2021).

    Article  CAS  PubMed  Google Scholar 

  37. Jakhar, V. et al. Tethered tungsten-alkylidenes for the synthesis of cyclic polynorbornene via ring expansion metathesis: unprecedented stereoselectivity and trapping of key catalytic intermediates. J. Am. Chem. Soc. 143, 1235–1246 (2021).

    Article  CAS  PubMed  Google Scholar 

  38. Alvarez, M. A., García, M. E., Martínez, M. E., Menéndez, S. & Ruiz, M. A. Dehydrogenative formation and reactivity of the unsaturated benzylidyne-bridged complex [Mo2Cp2(μ-CPh)(μ-PCy2)(μ-CO)]: C–C and C–P coupling reactions. Organometallics 29, 710–713 (2010).

  39. Alvarez, M. A., García, M. E., García-Vivó, D., Martínez, M. E. & Ruiz, M. A. Binuclear carbyne and ketenyl derivatives of the alkyl-bridged complexes [Mo25-C5H5)2(μ-CH2R)(μ-PCy2)(CO)2] (R = H, Ph). Organometallics 30, 2189–2199 (2011).

  40. Alidori, S. et al. Synthesis and characterization of terminal [Re(XCO)(CO)2(triphos)] (X = N, P): isocyanate versus phosphaethynolate complexes. Chem. Eur. J. 18, 14805–14811 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. Jupp, A. R., Geeson, M. B., McGrady, J. E. & Goicoechea, J. M. Ambient-temperature synthesis of 2-phosphathioethynolate, PCS, and the ligand properties of ECX (E = N, P; X = O, S). Eur. J. Inorg. Chem. 2016, 639–648 (2016).

    Article  CAS  PubMed  Google Scholar 

  42. Filippou, A. C., Chernov, O. & Schnakenburg, G. Metal–silicon triple bonds: nucleophilic addition and redox reactions of the silylidyne complex [Cp(CO)2Mo≡Si-R]. Angew. Chem. Int. Ed. 50, 1122–1126 (2011).

  43. Hirotsu, M., Nunokawa, T. & Ueno, K. Synthesis and reactivity of a donor-free (silyl)(silylene)molybdenum complex: novel insertion reaction of an isocyanide into a Si−C bond. Organometallics 25, 1554–1556 (2006).

    Article  CAS  Google Scholar 

  44. Dübek, G., Hanusch, F., Munz, D. & Inoue, S. An air-stable heterobimetallic Si2M2 tetrahedral cluster. Angew. Chem. Int. Ed. 59, 5823–5829 (2020).

    Article  Google Scholar 

  45. Corey, J. Y. & Braddock-Wilking, J. Reactions of hydrosilanes with transition-metal complexes: formation of stable transition-metal silyl compounds. Chem. Rev. 99, 175–292 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Cotton, F. A., Lahuerta, P. & Stults, B. R. The scrambling of carbonyl groups in guaiazulenehexacarbonyldimolybdenum and two isomeric triethylphosphine substitution products. Inorg. Chem. 15, 1866–1871 (1976).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project has received funding from the Alexander von Humboldt foundation for a Research Fellowship (to S.F.) and the European Research Council (ALLOWE 101001591) (to S.I.). We acknowledge M.M.D. Roy for proofreading. We acknowledge M. Ludwig for collection of UV-Vis spectral data. We gratefully acknowledge the Leibniz Supercomputing Centre for funding this project by providing computing time on its Linux-Cluster.

Author information

Authors and Affiliations

Authors

Contributions

S.F. conceived and performed the synthetic experiments and analysed the data. A.K. designed and performed the theoretical analyses. S.F. and R.S. solved and revised the XRD data. S.I. conceived and supervised the project. S.F., A.K. and S.I. wrote the manuscript.

Corresponding author

Correspondence to Shigeyoshi Inoue.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks D. Scheschkewitz and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: T. West, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1−35, Tables 1−8, Scheme 1 and Discussion.

Supplementary Data 1

Crystallographic data for [K(18c6)][1] CCDC-2192074.

Supplementary Data 2

Crystallographic data for 2 CCDC-2192075.

Supplementary Data 3

Crystallographic data for [K(18c6)][2′] CCDC-2192076.

Supplementary Data 4

Crystallographic data for [K(18c6)][5] CCDC-2192077.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fujimori, S., Kostenko, A., Scopelliti, R. et al. Synthesis, isolation and application of a sila-ketenyl anion. Nat. Synth 2, 688–694 (2023). https://doi.org/10.1038/s44160-023-00283-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44160-023-00283-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing