Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Regioselective umpolung para-C–H functionalization of arylhydroxylamines

Abstract

Regioselective arene C–H functionalization has widespread applications in synthetic chemistry, materials science and fine chemical industries. Catalytic methods for the ortho- and meta-C–H functionalization of arenes are well developed; however, para-C–H bond functionalization is much less developed and is more challenging due to the distal relationship of the para-C–H bond with the para-directing group. Here we report an umpolung method for the synthesis of para-functionalized anilides from arylhydroxylamines and O- and S-nucleophiles in the presence of fluorosulfuryl imidazolium triflates. Proceeding at low temperature under air, this process is tolerant of a diverse range of arylhydroxylamines and O- and S-nucleophiles giving para-functionalized anilide derivatives in good yields and excellent para-selectivity. Mechanistic studies reveal that the reaction process probably proceeds through a polarity inversion sequence, which comprises O-fluorosulfonation of the arylhydroxylamine substrate followed by N–O bond cleavage and nucleophilic addition. The synthetic utility of the reaction was demonstrated through reaction scale-up and onward synthetic transformations of the reaction products.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Synthetic strategies for C–H functionalization of N-arylhydroxylamines.
Fig. 2: Synthetic application of the para-functionalized anilide.
Fig. 3: Control experiments and proposed reaction pathway.
Fig. 4: DFT analysis.

Similar content being viewed by others

Data availability

The X-ray crystallographic coordinates for the products reported in the present article have been deposited at the Cambridge Crystallographic Data Centre (CCDC), under deposition nos. CCDC 2156664 (3p), CCDC 2160531 (5q) and CCDC 2165574 (7e). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures. Experimental procedures and characterization of new compounds are available in the Supplementary Information.

References

  1. Seebach, D. & Corey, E. J. Generation and synthetic applications of 2-lithio-1,3-dithianes. J. Org. Chem. 40, 231–237 (1975).

    Article  CAS  Google Scholar 

  2. Dickstein, J. S., Fennie, M. W., Norman, A. L., Paulose, B. J. & Kozlowski, M. C. Three component coupling of α-iminoesters via umpolung addition of organometals: synthesis of α,α-disubstituted α-amino acids. J. Am. Chem. Soc. 130, 15794–15795 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Schedler, M., Wang, D.-S. & Glorius, F. NHC-catalyzed hydroacylation of styrenes. Angew. Chem. Int. Ed. 52, 2585–2589 (2013).

    Article  CAS  Google Scholar 

  4. Wu, Y., Hu, L., Li, Z. & Deng, L. Catalytic asymmetric umpolung reactions of imines. Nature 523, 445–450 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Waser, M. & Novacek, J. An organocatalytic biomimetic strategy paves the way for the asymmetric umpolung of imines. Angew. Chem. Int. Ed. 54, 14228–14231 (2015).

    Article  CAS  Google Scholar 

  6. Liu, J., Cao, C.-G., Sun, H.-B., Zhang, X. & Niu, D. Catalytic asymmetric umpolung allylation of imines. J. Am. Chem. Soc. 138, 13103–13106 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. Patra, A. et al. N-Heterocyclic-carbene-catalyzed umpolung of imines. Angew. Chem. Int. Ed. 56, 2730–2734 (2017).

    Article  CAS  Google Scholar 

  8. Seebach, D. & Enders, D. Umpolung of amine reactivity. Nucleophilic α-(secondary amino)-alkylation via metalated nitrosamines. Angew. Chem. Int. Ed. Engl. 14, 15–32 (1975).

    Article  Google Scholar 

  9. Enders, D. & Balensiefer, T. Nucleophilic carbenes in asymmetric organocatalysis. Acc. Chem. Res. 37, 534–541 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Christmann, M. New developments in the asymmetric Stetter reaction. Angew. Chem. Int. Ed. 44, 2632–2634 (2005).

    Article  CAS  Google Scholar 

  11. Nair, V., Vellalath, S. & Babu, B. P. Recent advances in carbon-carbon bond-forming reactions involving homoenolates generated by NHC catalysis. Chem. Soc. Rev. 37, 2691–2698 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Nair, V. et al. Employing homoenolates generated by NHC catalysis in carbon-carbon bond-forming reactions: state of the art. Chem. Soc. Rev. 40, 5336–5346 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Biju, A. T., Kuhl, N. & Glorius, F. Extending NHC-catalysis: coupling aldehydes with unconventional reaction partners. Acc. Chem. Res. 44, 1182–1195 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Berkessel, A. et al. Umpolung by N-heterocyclic carbenes: generation and reactivity of the elusive 2,2-diamino enols (Breslow intermediates). Angew. Chem. Int. Ed. 51, 12370–12374 (2012).

    Article  CAS  Google Scholar 

  15. Berkessel, A., Yatham, V. R., Elfert, S. & Neudoerfl, J.-M. Characterization of the key intermediates of carbene-catalyzed umpolung by NMR spectroscopy and X-ray diffraction: Breslow intermediates, homoenolates, and azolium enolates. Angew. Chem. Int. Ed. 52, 11158–11162 (2013).

    Article  CAS  Google Scholar 

  16. Menon, R. S., Biju, A. T. & Nair, V. Recent advances in employing homoenolates generated by N-heterocyclic carbene (NHC) catalysis in carbon-carbon bond-forming reactions. Chem. Soc. Rev. 44, 5040–5052 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Yoshimura, A. & Zhdankin, V. V. Advances in synthetic applications of hypervalent iodine compounds. Chem. Rev. 116, 3328–3435 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. Arava, S. et al. Enolonium species—umpoled enolates. Angew. Chem. Int. Ed. 56, 2599–2603 (2017).

    Article  CAS  Google Scholar 

  19. Arava, S., Santra, S. K., Pathe, G. K., Kapanaiah, R. & Szpilman, A. M. Direct umpolung Morita–Baylis–Hillman like α-functionalization of enones via enolonium species. Angew. Chem. Int. Ed. 59, 15171–15175 (2020).

    Article  CAS  Google Scholar 

  20. Kiefl, G. M. & Gulder, T. α-Functionalization of ketones via a nitrogen directed oxidative umpolung. J. Am. Chem. Soc. 142, 20577–20582 (2020).

    Article  CAS  PubMed  Google Scholar 

  21. Wang, T.-C. et al. Palladium-catalyzed enantioselective C(sp3)-H/C(sp3)-H umpolung coupling of N-allylimine and α-aryl ketones. J. Am. Chem. Soc. 143, 20454–20461 (2021).

    Article  CAS  PubMed  Google Scholar 

  22. Godula, K. & Sames, D. C-H bond functionalization in complex organic synthesis. Science 312, 67–72 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Alberico, D., Scott, M. E. & Lautens, M. Aryl-aryl bond formation by transition-metal-catalyzed direct arylation. Chem. Rev. 107, 174–238 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. McGlacken, G. P. & Bateman, L. M. Recent advances in aryl-aryl bond formation by direct arylation. Chem. Soc. Rev. 38, 2447–2464 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Lyons, T. W. & Sanford, M. S. Palladium-catalyzed ligand-directed C-H functionalization reactions. Chem. Rev. 110, 1147–1169 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cheng, C. & Hartwig, J. F. Rhodium-catalyzed intermolecular C-H silylation of arenes with high steric regiocontrol. Science 343, 853–857 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Li, B., Ali, A. I. M. & Ge, H. Recent advances in using transition-metal-catalyzed C-H functionalization to build fluorescent materials. Chem 6, 2591–2657 (2020).

    Article  CAS  Google Scholar 

  28. Rej, S., Ano, Y. & Chatani, N. Bidentate directing groups: an efficient tool in C-H bond functionalization chemistry for the expedient construction of C-C bonds. Chem. Rev. 120, 1788–1887 (2020).

    Article  CAS  PubMed  Google Scholar 

  29. Zhao, Q., Meng, G., Szostak, M. & Nolan, S. P. N-Heterocyclic carbene (NHC) complexes in C-H activation reactions. Chem. Rev. 120, 1981–2048 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shao, Q., Wu, K., Zhuang, Z., Qian, S. & Yu, J.-Q. From Pd(OAc)2 to chiral catalysts: the discovery and development of bifunctional mono-N-protected amino acid ligands for diverse C-H functionalization reactions. Acc. Chem. Res. 53, 833–851 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Phipps, R. J. & Gaunt, M. J. A meta-selective copper-catalyzed C-H bond arylation. Science 323, 1593–1597 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Leow, D., Li, G., Mei, T.-S. & Yu, J.-Q. Activation of remote meta-C-H bonds assisted by an end-on template. Nature 486, 518–522 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hofmann, N. & Ackermann, L. meta-Selective C-H bond alkylation with secondary alkyl halides. J. Am. Chem. Soc. 135, 5877–5884 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Bag, S. et al. Remote para-C-H functionalization of arenes by a D-shaped biphenyl template-based assembly. J. Am. Chem. Soc. 137, 11888–11891 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. Patra, T. et al. Palladium-catalyzed directed para C-H functionalization of phenols. Angew. Chem. Int. Ed. 55, 7751–7755 (2016).

    Article  CAS  Google Scholar 

  36. Dey, A., Sinha, S. K., Achar, T. K. & Maiti, D. Accessing remote meta- and para-C(sp2)-H bonds with covalently attached directing groups. Angew. Chem. Int. Ed. 58, 10820–10843 (2019).

    Article  CAS  Google Scholar 

  37. Shi, H. et al. Differentiation and functionalization of remote C-H bonds in adjacent positions. Nat. Chem. 12, 399–404 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mao, J.-H. et al. Organocatalyst-controlled site-selective arene C-H functionalization. Nat. Chem. 13, 982–991 (2021).

    Article  CAS  PubMed  Google Scholar 

  39. Tabolin, A. A. & Ioffe, S. L. Rearrangement of N-oxyenamines and related reactions. Chem. Rev. 114, 5426–5476 (2014).

    Article  CAS  PubMed  Google Scholar 

  40. Kikugawa, Y. & Shimada, M. AlCl3-mediated regioselective migration of a methoxy group of N-methoxy-N-phenylamides to the ortho position of the phenyl ring. J. Chem. Soc. Chem. Commun. 19, 1450–1451 (1989).

    Article  Google Scholar 

  41. Kikugawa, Y. & Mitsui, K. Migration of the hydroxyl group of N-hydroxy-N-phenylamides to the phenyl group with tertiary phosphines and tetrachloromethane. A novel transhydroxylation reaction. Chem. Lett. 22, 1369–1372 (1993).

    Article  Google Scholar 

  42. Hojczyk, K. N., Feng, P., Zhan, C. & Ngai, M.-Y. Trifluoromethoxylation of arenes: synthesis of ortho-trifluoromethoxylated aniline derivatives by OCF3 migration. Angew. Chem. Int. Ed. 53, 14559–14563 (2014).

    Article  CAS  Google Scholar 

  43. Porzelle, A., Woodrow, M. D. & Tomkinson, N. C. O. Rearrangement of differentially protected N-arylhydroxylamines. Eur. J. Org. Chem. 2008, 5135–5143 (2008).

    Article  Google Scholar 

  44. Jones, K. L., Porzelle, A., Hall, A., Woodrow, M. D. & Tomkinson, N. C. O. Copper-catalyzed coupling of hydroxylamines with aryl iodides. Org. Lett. 10, 797–800 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Porzelle, A., Woodrow, M. D. & Tomkinson, N. C. O. Palladium-catalyzed coupling of hydroxylamines with aryl bromides, chlorides, and iodides. Org. Lett. 11, 233–236 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Porzelle, A., Woodrow, M. D. & Tomkinson, N. C. O. Synthesis of benzoxazolones from nitroarenes or aryl halides. Org. Lett. 12, 812–815 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Nakamura, I., Owada, M., Jo, T. & Terada, M. Concerted [1,3]-rearrangement in cationic cobalt-catalyzed reaction of O-(alkoxycarbonyl)-N-arylhydroxylamines. Org. Lett. 19, 2194–2196 (2017).

    Article  CAS  PubMed  Google Scholar 

  48. Yuan, H. et al. Copper-catalyzed tandem O-vinylation of arylhydroxylamines/[3,3]-rearrangement/cyclization: synthesis of highly substituted indoles and benzoindoles. ACS Catal. 9, 3906–3912 (2019).

    Article  CAS  Google Scholar 

  49. Yuan, H. et al. Tandem approach to NOBIN analogues from arylhydroxylamines and diaryliodonium salts via [3,3]-sigmatropic rearrangement. Chem. Commun. 56, 8226–8229 (2020).

    Article  CAS  Google Scholar 

  50. Porzelle, A., Woodrow, M. D. & Tomkinson, N. C. O. Rearrangement strategy for the synthesis of 2-aminoanilines. Org. Lett. 12, 1492–1495 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Shaaban, S., Tona, V., Peng, B. & Maulide, N. Hydroxamic acids as chemoselective (ortho-amino)arylation reagents via sigmatropic rearrangement. Angew. Chem. Int. Ed. 56, 10938–10941 (2017).

    Article  CAS  Google Scholar 

  52. Bamberger, E. Phenylhydroxylamine. Ber. Dtsch. Chem. Ges. 27, 1548–1557 (1894).

    Article  CAS  Google Scholar 

  53. Bamberger, E. Reduction of nitro-compounds. Chem. Ber. 27, 1347–1350 (1894).

    Article  Google Scholar 

  54. Chuang, H.-Y., Schupp, M., Meyrelles, R., Maryasin, B. & Maulide, N. Redox-neutral selenium-catalysed isomerisation of para-hydroxamic acids into para-aminophenols. Angew. Chem. Int. Ed. 60, 13778–13782 (2021).

    Article  CAS  Google Scholar 

  55. Dong, J., Krasnova, L., Finn, M. G. & Sharpless, K. B. Sulfur(VI) fluoride exchange (SuFEx): another good reaction for click chemistry. Angew. Chem. Int. Ed. 53, 9430–9448 (2014).

    Article  CAS  Google Scholar 

  56. Dong, J., Sharpless, K. B., Kwisnek, L., Oakdale, J. S. & Fokin, V. V. SuFEx-based synthesis of polysulfates. Angew. Chem. Int. Ed. 53, 9466–9470 (2014).

    Article  CAS  Google Scholar 

  57. Hanley, P. S., Ober, M. S., Krasovskiy, A. L., Whiteker, G. T. & Kruper, W. J. Nickel- and palladium-catalyzed coupling of aryl fluorosulfonates with aryl boronic acids enabled by sulfuryl fluoride. ACS Catal. 5, 5041–5046 (2015).

    Article  CAS  Google Scholar 

  58. Gao, B. et al. Bifluoride-catalysed sulfur(VI) fluoride exchange reaction for the synthesis of polysulfates and polysulfonates. Nat. Chem. 9, 1083–1088 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Guo, T. et al. A new portal to SuFEx click chemistry: a stable fluorosulfuryl imidazolium salt emerging as an ‘F-SO2+’ donor of unprecedented reactivity, selectivity, and scope. Angew. Chem. Int. Ed. 57, 2605–2610 (2018).

    Article  CAS  Google Scholar 

  60. Yang, C., Flynn, J. P. & Niu, J. Facile synthesis of sequence-regulated synthetic polymers using orthogonal SuFEx and CuAAC click reactions. Angew. Chem. Int. Ed. 57, 16194–16199 (2018).

    Article  CAS  Google Scholar 

  61. Liu, Z. et al. SuFEx click chemistry enabled late-stage drug functionalization. J. Am. Chem. Soc. 140, 2919–2925 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Barrow, A. S. et al. The growing applications of SuFEx click chemistry. Chem. Soc. Rev. 48, 4731–4758 (2019).

    Article  CAS  PubMed  Google Scholar 

  63. Zheng, Q. et al. Sulfur [18F]fluoride exchange click chemistry enabled ultrafast late-stage radiosynthesis. J. Am. Chem. Soc. 143, 3753–3763 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhou, H. et al. Introduction of a crystalline, shelf-stable reagent for the synthesis of sulfur(VI) fluorides. Org. Lett. 20, 812–815 (2018).

    Article  CAS  PubMed  Google Scholar 

  65. Liang, Q. et al. Palladium-catalyzed, ligand-free Suzuki reaction in water using aryl fluorosulfates. Org. Lett. 17, 1942–1945 (2015).

    Article  CAS  PubMed  Google Scholar 

  66. Schimler, S. D. et al. Nucleophilic deoxyfluorination of phenols via aryl fluorosulfonate intermediates. J. Am. Chem. Soc. 139, 1452–1455 (2017).

    Article  CAS  PubMed  Google Scholar 

  67. Ma, C. et al. Nickel-catalyzed carboxylation of aryl and heteroaryl fluorosulfates using carbon dioxide. Org. Lett. 21, 2464–2467 (2019).

    Article  CAS  PubMed  Google Scholar 

  68. Zhang, Y. et al. Palladium-catalyzed one-pot phosphorylation of phenols mediated by sulfuryl fluoride. Chem. Commun. 57, 4588–4591 (2021).

    Article  CAS  Google Scholar 

  69. Epifanov, M. et al. One-pot 1,1-dihydrofluoroalkylation of amines using sulfuryl fluoride. J. Am. Chem. Soc. 140, 16464–16468 (2018).

    Article  CAS  PubMed  Google Scholar 

  70. Foth, P. J., Gu, F., Bolduc, T. G., Kanani, S. S. & Sammis, G. M. New sulfuryl fluoride-derived alkylating reagents for the 1,1-dihydrofluoroalkylation of thiols. Chem. Sci. 10, 10331–10335 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Fang, W.-Y., Zha, G.-F., Zhao, C. & Qin, H.-L. Regioselective installation of fluorosulfate (-OSO2F) functionality into aromatic C(sp2)-H bonds for the construction of para-amino-arylfluorosulfates. Chem. Commun. 55, 6273–6276 (2019).

    Article  CAS  Google Scholar 

  72. Kikugawa, Y., Matsumoto, K., Mitsui, K. & Sakamoto, T. A facile regioselective aromatic fluorination of N-aryl-N-hydroxyamides with diethylaminosulfur trifluoride (DAST). J. Chem. Soc. Chem. Commun. 921–922 (1992).

  73. Fu, L. et al. Ligand-enabled site-selectivity in a versatile rhodium(II)-catalysed aryl C-H carboxylation with CO2. Nat. Catal. 1, 469–478 (2018).

    Article  CAS  Google Scholar 

  74. Cermak, J. K. & Cirkva, V. Copper-mediated synthesis of mono- and dichlorinated diaryl ethers. Tetrahedron Lett. 55, 4185–4188 (2014).

    Article  CAS  Google Scholar 

  75. Tamaki, T. & Nagaki, A. Flash production of organophosphorus compounds in flow. Tetrahedron Lett. 81, 153364 (2021).

    Article  CAS  Google Scholar 

  76. Bronner, S. M., Goetz, A. E. & Garg, N. K. Overturning indolyne regioselectivities and synthesis of indolactam V. J. Am. Chem. Soc. 133, 3832–3835 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Rodriguez-Otero, J., Hermida-Ramon, J. M. & Cabaleiro-Lago, E. M. DFT study of the nucleophilic addition of water to ketenes. Eur. J. Org. Chem. 2007, 2344–2351 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (grant nos. 22271176, 21933003 and 91856105), the Key Technology Research and Development Program of Shandong Province (grant no. 2019GSF108056) and Shandong University. This work was also supported by the High-Performance Computing Platform of Peking University. We thank D. Sun at Shandong University for the X-ray diffraction and data analysis.

Author information

Authors and Affiliations

Authors

Contributions

H.G. conceived and directed the project. Z.X. designed and performed experiments. X.-J.L. performed the DFT calculations and mechanism analysis. Z.Q.G. and Z.W.G. helped with the collection of some new compounds and data analysis. H.G., Z.-X.Y. and X.-J.L. wrote the paper with input from all other authors. All authors discussed the results and commented on the paper.

Corresponding authors

Correspondence to Zhi-Xiang Yu or Hongyin Gao.

Ethics declarations

Competing interests

Shandong University has filed a patent application (patent application no. 202210215790.X, China). The competing interest is related to H.G., Z.X., Z.Q.G. and Z.W.G. X.-J.L. and Z.-X.Y. declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Jesus Jover and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Thomas West, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–5, Discussion and Tables 1–8.

Supplementary Data 1

Crystallographic data for 3p, CCDC 2156664.

Supplementary Data 2

Crystallographic data for 5q, CCDC 2160531.

Supplementary Data 3

Crystallographic data for 7e, CCDC 2165574.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xi, Z., Liu, XJ., Guo, Z. et al. Regioselective umpolung para-C–H functionalization of arylhydroxylamines. Nat. Synth 2, 778–788 (2023). https://doi.org/10.1038/s44160-023-00293-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44160-023-00293-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing