Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chemoenzymatic synthesis of macrocycles via dynamic kinetic resolution of secondary alcohols

Abstract

Macrolactones are privileged motifs in materials science, aromachemicals and pharmaceuticals. The pivotal ester linkage is often formed from chiral secondary alcohols, with macrolactonization using stoichiometric reagents to ensure retention or inversion of stereochemistry without compromising enantiopurity. An ideal strategy for macrolactonization is via dynamic kinetic resolution (DKR), which involves the simultaneous formation of the ester bond and introduction of a chiral centre with high stereocontrol. Surprisingly, a DKR method within the context of macrocyclization is yet to be reported. Here, using a chemoenzymatic approach, the macrocyclic DKR of seco esters affords enantioenriched macrolactones. An optimized protocol (using Candida antarctica lipase B (~0.04 mol%) and Shvo’s catalyst) forms 14–19-membered macrocycles with excellent enantioselectivities (85–99% e.e.). A variety of macrolactones were synthesized including aliphatic macrocycles, meta- and paracyclophanes as well as a macrodiolide via a dimerization protocol that was converted to the natural product macrolide (−)-pyrenophorin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Comparing inter- and intramolecular DKR processes.
Fig. 2: Optimization of chemoenzymatic DKR.
Fig. 3: Plausible mechanism for the chemoenzymatic DKR method.
Fig. 4: Scope of the DKR protocol towards macrolactones.

Similar content being viewed by others

Data availability

All data relating to the materials and methods, experimental procedures, mechanistic studies and NMR spectra are available in the Supplementary Information.

References

  1. Driggers, E. M., Hale, S. P., Lee, J. & Terrett, N. K. The exploration of macrocycles for drug discovery — an underexploited structural class. Nature 7, 608–624 (2008).

    CAS  Google Scholar 

  2. Wessjohann, L. A., Ruijter, E., Garica-Rivera, D. & Brandt, W. What can a chemist learn from nature’s macrocycles? – a brief, conceptual view. Mol. Divers. 9, 171–186 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Henkel, T., Brunne, R. M., Mller, H. & Reichel, F. Statistical investigation into the structural complementarity of natural products and synthetic compounds. Angew. Chem. Int. Ed. 38, 643–647 (1999).

    Article  CAS  Google Scholar 

  4. Kim, H. J., Pongdee, R., Wu, Q., Hong, L. & Liu, H.-W. The biosynthesis of spinosyn in Saccharopolyspora spinosa: synthesis of the cross-bridging precursor and identification of the function of SpnJ. J. Am. Chem. Soc. 129, 14582–14584 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Flynn, E. H., Sigal, M. V. Jr., Wiley, P. F. & Gerzon, K. Erythromycin. I. Properties and degradation studies. J. Am. Chem. Soc. 76, 3121–3131 (1954).

    Article  CAS  Google Scholar 

  6. Nicolaou, K. C. et al. Design, synthesis, and biological properties of highly potent epothilone B analogues. Angew. Chem. Int. Ed. 42, 3515–3520 (2003).

    Article  CAS  Google Scholar 

  7. Gaul, C. et al. The migrastatin family: discovery of potent cell migration inhibitors by chemical synthesis. J. Am. Chem. Soc. 126, 11326–11337 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Wender, P. A., DeChristopher, B. A. & Schrier, A. J. Formal synthesis of (−)-kendomycin featuring a Prins-cyclization to construct the macrocycle. J. Am. Chem. Soc. 130, 6658–6659 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zin, P. P. K., Williams, G. J. & Ekins, S. Cheminformatics analysis and modeling with MacrolactoneDB. Sci. Rep. 10, 6284 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Seiple, I. B. et al. A platform for the discovery of new macrolide antibiotics. Nature 533, 338–345 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Saridakis, I., Kaiser, D. & Maulide, N. Unconventional macrocyclizations in natural product synthesis. ACS Cent. Sci. 6, 1869–1889 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gradillas, A. & Perez-Castells, J. Macrocyclization by ring-closing metathesis in the total synthesis of natural products: reaction conditions and limitations. Angew. Chem. Int. Ed. 45, 6086–6101 (2006).

    Article  CAS  Google Scholar 

  13. Garg, N. K., Hiebert, S. & Overman, L. E. Total synthesis of (−)-sarain A. Angew. Chem. Int. Ed. 45, 2912–2915 (2006).

    Article  CAS  Google Scholar 

  14. Trost, B. M., Harrington, P. E., Chisholm, J. D. & Wrobleski, S. T. Total synthesis of (+)-amphidinolide A. Structure elucidation and completion of the synthesis. J. Am. Chem. Soc. 127, 13598–13610 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Hoye, T. R. & Wang, J. Alkyne haloallylation [with Pd(II)] as a core strategy for macrocycle synthesis: a total synthesis of (−)-haterumalide NA/(−)-oocydin A. J. Am. Chem. Soc. 127, 6950–6951 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Trost, B. M. Cyclizations via palladium-catalyzed allylic alkylations. Angew. Chem. Int. Ed. Engl. 28, 1173–1192 (1989).

    Article  Google Scholar 

  17. Fraunhoffer, K. J., Prabagaran, N., Sirois, L. E. & White, M. C. Macrolactonization via hydrocarbon oxidation. J. Am. Chem. Soc. 128, 9032–9033 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lumbroso, A., Koschker, P., Vautravers, N. R. & Breit, B. Enantioselective synthesis of branched allylic esters via rhodium-catalyzed coupling of allenes with carboxylic acids. J. Am. Chem. Soc. 133, 2386–2389 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Cooke, M. L., Xu, K. & Breit, B. Enantioselective rhodium-catalyzed synthesis of branched allylic amines by intermolecular hydroamination of terminal allene. Angew. Chem. Int. Ed. 51, 10876–10879 (2012).

    Article  CAS  Google Scholar 

  20. Xu, K., Gilles, T. & Breit, B. Asymmetric synthesis of N-allylic indoles via regio- and enantioselective allylation of aryl hydrazines. Nat. Commun. 6, 7616 (2015).

    Article  PubMed  Google Scholar 

  21. de Léséleuc, M. & Collins, S. K. Direct macrolactonization of seco acids via hafnium(IV) catalysis. ACS Catal. 3, 1462–1467 (2015).

    Article  Google Scholar 

  22. de Léséleuc, M. & Collins, S. K. Direct synthesis of macrodiolides via hafnium(IV) catalysis. Chem. Commun. 51, 10471–10474 (2015).

    Article  Google Scholar 

  23. Parenty, A., Moreau, X. & Campagne, J.-M. Macrolactonizations in the total synthesis of natural products. Chem. Rev. 106, 911–939 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Parenty, A., Moreau, X., Niel, G. & Campagne, J.-M. Update 1 of: macrolactonizations in the total synthesis of natural products. Chem. Rev. 113, PR1–PR40 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Zhiwei, G., Ngooi, T. K., Scilimati, A., Fülling, G. & Sih, C. J. Macrocyclic lactones via biocatalysis in non-aqueous media. Tetrahedron Lett. 29, 5583–5586 (1998).

    Article  Google Scholar 

  26. Gargouri, M., Drouet, P. & Legoy, M.-D. Synthesis of a novel macrolactone by lipase-catalyzed intra-esterification of hydroxy-fatty acid in organic media. J. Biotechnol. 92, 259–266 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Kiran, K. R. & Divakar, S. Lipase catalyzed synthesis of organic acid esters of lactic acid in non-aqueous media. J. Biotechnol. 87, 109–121 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Fortunati, T., D’Acunto, M., Caruso, T. & Spinella, A. Chemoenzymatic preparation of musky macrolactones. Tetrahedron 71, 2357–2362 (2015).

    Article  CAS  Google Scholar 

  29. Bisht, K. S., Bhatt, S. & Muppalla, K. Synthesis of glycolipid analogs via highly regioselective macrolactonization catalyzed by lipase. Tetrahedron Lett. 47, 8645–8649 (2006).

    Article  CAS  Google Scholar 

  30. Gagnon, C. et al. Biocatalytic synthesis of planar chiral macrocycles. Science 367, 917–921 (2020).

    Article  CAS  PubMed  Google Scholar 

  31. Sugai, T., Katoh, O. & Ohta, H. Chemo-enzymatic synthesis of (R,R)-(−)-pyrenophorin. Tetrahedron 51, 11987–11998 (1995).

    Article  CAS  Google Scholar 

  32. Verho, O. & Bäckvall, J.-E. Chemoenzymatic dynamic kinetic resolution: a powerful tool for the preparation of enantiomerically pure alcohols and amines. J. Am. Chem. Soc. 137, 3996–4009 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lia, J., Amatunia, A. & Renata, H. Recent advances in the chemoenzymatic synthesis of bioactive natural products. Curr. Opin. Chem. Biol. 55, 111–118 (2020).

    Article  Google Scholar 

  34. Yang, L.-C., Deng, H. & Renata, H. Recent progress and developments in chemoenzymatic and biocatalytic dynamic kinetic resolution. Org. Process Res. Dev. 26, 1925–1943 (2022).

    Article  CAS  Google Scholar 

  35. Li, X., Cao, X., Xiong, J. & Ge, J. Enzyme–metal hybrid catalysts for chemoenzymatic reactions. Small 16, 1902751 (2020).

    Article  CAS  Google Scholar 

  36. Ferraccioli, R. Progress on the stereoselective synthesis of chiral molecules based on metal-catalyzed dynamic kinetic resolution of alcohols with lipases. Symmetry 13, 1744–1766 (2021).

    Article  CAS  Google Scholar 

  37. Donald, J. R. & Unsworth, W. P. Ring-expansion reactions in the synthesis of macrocycles and medium-sized rings. Chem. Eur. J. 23, 8780–8799 (2017).

    Article  CAS  PubMed  Google Scholar 

  38. Stephens, T. C., Lawer, A., French, T. & Unsworth, W. P. Iterative assembly of macrocyclic lactones using successive ring expansion reactions. Chem. Eur. J. 24, 13947–13953 (2018).

    Article  CAS  Google Scholar 

  39. Gustafson, K. P. J., Gumundsson, A., Lewis, K. & Bäckvall, J. E. Chemoenzymatic dynamic kinetic resolution of secondary alcohols using an air- and moisture-stable iron racemization catalyst. Chem. Eur. J. 23, 1048–1051 (2017).

    Article  CAS  Google Scholar 

  40. Pamies, O. & Bäckvall, J.-E. Enzymatic kinetic resolution and chemoenzymatic dynamic kinetic resolution of δ-hydroxy esters. An efficient route to chiral δ-Lactones. J. Org. Chem. 67, 1261–1265 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Corbeil, C. R., Englebienne, P. & Moitessier, N. Docking ligands into flexible and solvated macromolecules. 1. Development and validation of FITTED 1.0. J. Chem. Inf. Model. 47, 435–449 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Moitessier, N. et al. Medicinal chemistry projects requiring imaginative structure-based drug design methods. Acc. Chem. Res. 49, 1646–1657 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. Therrien, E. et al. Integrating medicinal chemistry, organic/combinatorial chemistry, and computational chemistry for the discovery of selective estrogen receptor modulators with FORECASTER, a novel platform for drug discovery. J. Chem. Inf. Model. 52, 210–224 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Kazlauskas, R. J., Weissfloch, A. N. E., Rappaport, A. T. & Cuccia, L. A. A rule to predict which enantiomer of a secondary alcohol reacts faster in reactions catalyzed by cholesterol esterase, lipase from Pseudomonas cepacia, and lipase from Candida rugosa. J. Org. Chem. 56, 2656–2665 (1991).

    Article  CAS  Google Scholar 

  45. Uppenberg, J. et al. Crystallographic and molecular-modeling studies of lipase B from Candida antarctica reveal a stereospecificity pocket for secondary alcohols. Biochemistry 34, 16838–16851 (1995).

    Article  CAS  PubMed  Google Scholar 

  46. Magnusson, A. O., Takwa, M., Hamberg, A. & Hult, K. An S-selective lipase was created by rational redesign and the enantioselectivity increased with temperature. Angew. Chem. Int. Ed. 44, 4582–4585 (2005).

    Article  CAS  Google Scholar 

  47. Schopf, P. & Warshel, A. Validating computer simulations of enantioselective catalysis; reproducing the large steric and entropic contributions in Candida antarctica lipase B. Proteins 82, 1387–1399 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ferrario, V., Ebert, C., Nitti, P., Pitacco, G. & Gardossi, L. Modelling and predicting enzyme enantioselectivity: the aid of computational methods for the rational use of lipase B from Candida antarctica. Curr. Biotechnol. 4, 87–99 (2015).

    Article  CAS  Google Scholar 

  49. Park, A. et al. Structural and experimental evidence for the enantiomeric recognition toward a bulky sec-alcohol by Candida antarctica lipase B. ACS Catal. 6, 7458–7465 (2016).

    Article  CAS  Google Scholar 

  50. Nozoe, S. et al. The structure of pyrenophorin. Tetrahedron Lett. 6, 4675–4677 (1995).

    Article  Google Scholar 

  51. Rao, K. S., Reddy, S., Mukkanti, K., Pala, M. & Iqbala, J. A concise asymmetric route to the antibiotic macrolides patulolide A and pyrenophorin. Tetrahedron Lett. 47, 6623–6626 (2006).

    Article  CAS  Google Scholar 

  52. Furstner, A., Thiel, O. R. & Ackermann, L. Exploiting the reversibility of olefin metathesis. Syntheses of macrocyclic trisubstituted alkenes and (R,R)-(−)-pyrenophorin. Org. Lett. 3, 449–451 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Benítez-Mateos, A. I., Padrosa, D. R., Contente, M. L. & Paradisi, F. Flow biocatalysis 101: design, development and applications. React. Chem. Eng. 6, 599–611 (2021).

    Article  Google Scholar 

  54. Eijsink, V. G. H., Gaseidnes, S., Borchert, T. V. & van den Burg, B. Directed evolution of enzyme stability. Biomol. Eng. 22, 21–30 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Palomo, J. M. Nanobiohybrids: a new concept for metal nanoparticles synthesis. Chem. Commun. 55, 9583–9589 (2019).

    Article  CAS  Google Scholar 

  56. González-Granda, S., Escot, L., Lavandera, I. & Gotor-Fernández, V. Chemoenzymatic cascades combining biocatalysis and transition metal catalysis for asymmetric synthesis. Angew. Chem. Int. Ed. 62, e202217713 (2023).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the Natural Sciences and Engineering Research Council of Canada (NSERC, Discovery 1043344 and RGPIN-2020-05006), Université de Montréal and the Fonds de Recherche Nature et Technologies via the Centre in Green Chemistry and Catalysis (FRQNT-2020-RS4-265155-CCVC) for generous funding. We thank E. Godin for preliminary results. N. Moitessier, B. Weiser and S. Ma are thanked for computational help with the FORECASTER program.

Author information

Authors and Affiliations

Authors

Contributions

S.K.C. and J.G.-M. were involved in the discovery of the macrocyclization process. J.G.-M., M.S., E.F., G.L. and S.K.C. participated in the development of the methods and investigations. S.K.C. designed and directed the investigations. S.K.C. and J.G.-M. wrote the manuscript.

Corresponding author

Correspondence to Shawn K. Collins.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Jan-Erling Bäckvall, Jose M. Palomo, Xiang Sheng and William Unsworth for their contribution to the peer review of this work. Primary Handling Editor: Thomas West, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1 and 2, experimental details and characterization data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guerrero-Morales, J., Scaglia, M., Fauran, E. et al. Chemoenzymatic synthesis of macrocycles via dynamic kinetic resolution of secondary alcohols. Nat. Synth 3, 1275–1282 (2024). https://doi.org/10.1038/s44160-024-00591-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44160-024-00591-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing