Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Palladium-catalysed [2σ + 2π] cycloaddition reactions of bicyclo[1.1.0]butanes with aldehydes

Abstract

Cycloaddition reactions of bicyclo[1.1.0]butanes (BCBs) with 2π components are a powerful tool for preparing C(sp3)-rich arene bioisosteres. Despite enormous progress in this field, catalytic enantioselective cycloadditions of BCBs that produce enantioenriched three-dimensional bioisosteres are underdeveloped. Here we report a palladium-catalysed [3 + 2] cycloaddition reaction of vinyl-carbonyl-BCBs with carbonyl compounds, including formaldehyde, activated ketones, and aliphatic and aromatic aldehydes. This approach provides quick access to a wide variety of 2-oxabicyclo[2.1.1]hexanes. Density functional theory calculations indicate that the reaction occurs through a zwitterionic mechanism involving σ-bond cleavage, nucleophilic addition and allylic substitution. When (R,R)-ANDEN-phenyl Trost ligand is used, the stereoselectivity of the addition of palladium-zwitterionic enolates to carbonyl can be controlled to achieve enantioselective [3 + 2] cycloadditions. We further demonstrate the practicality of the method by carrying out several downstream transformations of cycloaddition products.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: [2σ + 2π] Cycloaddition reactions of BCBs.
Fig. 2: Development of [2σ + 2π] cycloaddition of VC-BCB 1a with paraformaldehyde.
Fig. 3: Substrate scope for palladium-catalysed [2σ + 2π] cycloaddition reaction of VC-BCBs with carbonyl compounds.
Fig. 4: Investigation of the enantioselective [2σ + 2π] cycloaddition of VC-BCBs 1a with benzaldehyde.
Fig. 5: Substrate scope for enantioselective [2σ + 2π] cycloadditions of VC-BCBs with aldehydes.
Fig. 6: Synthetic applications of the cycloaddition reaction.

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the Article and its Supplementary Information files. The X-ray crystallographic coordinates for structures reported in this study have been deposited at the Cambridge Crystallographic Data Centre (CCDC), under deposition numbers CCDC 2358250 for (S)-4o and CCDC 2325465 for (R)-4ab. These data can be obtained free of charge from the CCDC via www.ccdc.cam.ac.uk/data_request/cif.

References

  1. Lovering, F., Bikker, J. & Humblet, C. Escape from flatland: increasing saturation as an approach to improving clinical success. J. Med. Chem. 52, 6752–6756 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Lovering, F. Escape from flatland 2: complexity and promiscuity. MedChemComm 4, 515–519 (2013).

    Article  CAS  Google Scholar 

  3. Ritchie, T. J. & Macdonald, S. J. F. The impact of aromatic ring count on compound developability—are too many aromatic rings a liability in drug design? Drug Discov. Today 14, 1011–1020 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Subbaiah, M. A. M. & Meanwell, N. A. Bioisosteres of the phenyl ring: recent strategic applications in lead optimization and drug design. J. Med. Chem. 64, 14046–14128 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Auberson, Y. P. et al. Improving nonspecifc binding and solubility: bicycloalkyl groups and cubanes as para-phenyl bioisosteres. ChemMedChem 12, 590–598 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. Mykhailiuk, P. K. Saturated bioisosteres of benzene: where to go next? Org. Biomol. Chem. 17, 2839–2849 (2019).

    Article  CAS  PubMed  Google Scholar 

  7. Tse, G. E. et al. Nonclassical phenyl bioisosteres as effective replacements in a series of novel open-source antimalarials. J. Med. Chem. 63, 11585–11601 (2020).

    Article  CAS  PubMed  Google Scholar 

  8. Brown, N. & Mannhold, R. Bioisosteres in Medicinal Chemistry (Wiley-VCH, 2012).

  9. Blakemore, D. C. Organic synthesis provides opportunities to transform drug discovery. Nat. Chem. 10, 383–394 (2018).

    Article  CAS  PubMed  Google Scholar 

  10. Kanazawa, J. & Uchiyama, M. Recent advances in the synthetic chemistry of bicyclo[1.1.1]pentane. Synlett 30, 1–11 (2019).

    Article  CAS  Google Scholar 

  11. Gianatassio, R. et al. Strain-release amination. Science 351, 241–246 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kanazawa, J., Maeda, K. & Uchiyama, M. Radical multicomponent carboamination of [1.1.1]propellane. J. Am. Chem. Soc. 139, 17791–17794 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Zhang, X. et al. Copper-mediated synthesis of drug-like bicyclopentanes. Nature 580, 220–226 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Stephenson, R. J. et al. Photochemical formal (4 + 2)-cycloaddition of imine-substituted bicyclo[1.1.1]pentanes and alkenes. J. Am. Chem. Soc. 143, 21223–21228 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Yang, Y. et al. An intramolecular coupling approach to alkyl bioisosteres for the synthesis of multisubstituted bicycloalkyl boronates. Nat. Chem. 13, 950–955 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dong, W. et al. Exploiting the sp2 character of bicyclo[1.1.1]pentyl radicals in the transition-metal-free multi-component difunctionalization of [1.1.1]propellane. Nat. Chem. 14, 1068–1077 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Frank, N. et al. Synthesis of meta-substituted arene bioisosteres from [3.1.1]propellane. Nature 611, 721–726 (2022).

    Article  CAS  PubMed  Google Scholar 

  18. MacMillan, D. W. C. et al. General access to cubanes as benzene bioisosteres. Nature 618, 513–518 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Sarpong, R. et al. Skeletal editing approach to bridge-functionalized bicyclo[1.1.1]pentanes from azabicyclo[2.1.1]hexanes. J. Am. Chem. Soc. 145, 10960–10966 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Yu, I. F. et al. Catalytic undirected borylation of tertiary C–H bonds in bicyclo[1.1.1]pentanes and bicyclo[2.1.1]hexanes. Nat. Chem. 15, 685–693 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yang, Y. et al. Programmable late-stage functionalization of bridge-substituted bicyclo[1.1.1]pentane bis-boronates. Nat. Chem. 16, 285–293 (2024).

    Article  CAS  PubMed  Google Scholar 

  22. Alvarez, E. M. et al. O-, N- and C-bicyclopentylation using thianthrenium reagents. Nat. Synth. 2, 548–556 (2023).

    Article  CAS  Google Scholar 

  23. Denisenko, A. et al. Saturated bioisosteres of ortho-substituted benzenes. Angew. Chem. Int. Ed. 59, 20515–20521 (2020).

    Article  CAS  Google Scholar 

  24. Kleinmans, R. et al. Intermolecular [2π + 2σ]-photocycloaddition enabled by triplet energy transfer. Nature 605, 477–482 (2022).

    Article  CAS  PubMed  Google Scholar 

  25. Bychek, R. & Mykhailiuk, P. K. A. Practical and scalable approach to fluoro-substituted bicyclo[1.1.1]pentanes. Angew. Chem. Int. Ed. 61, e202205103 (2022).

    Article  CAS  Google Scholar 

  26. Xu, M. et al. Diboron(4)-catalyzed remote [3 + 2] cycloaddition of cyclopropanes via dearomative/rearomative radical transmission through pyridine. Angew. Chem. Int. Ed. 61, e202214507 (2022).

    Article  CAS  Google Scholar 

  27. Agasti, S. et al. A catalytic alkene insertion approach to bicyclo[2.1.1]hexane bioisosteres. Nat. Chem. 15, 535–541 (2023).

    Article  CAS  PubMed  Google Scholar 

  28. Dhake, K. et al. Beyond bioisosteres: divergent synthesis of azabicyclohexanes and cyclobutenyl amines from bicyclobutanes. Angew. Chem. Int. Ed. 61, e202204719 (2022).

    Article  CAS  Google Scholar 

  29. Liang, Y., Paulus, F., Daniliuc, C. G. & Glorius, F. Catalytic formal [2π + 2σ] cycloaddition of aldehydes with bicyclobutanes: expedient access to polysubstituted 2-oxabicyclo[2.1.1]hexanes. Angew. Chem. Int. Ed. 62, e20230504 (2023).

    Article  Google Scholar 

  30. Tang, L. et al. Silver‐catalyzed dearomative [2π + 2σ] cycloadditions of indoles with bicyclobutanes: access to indoline fused bicyclo[2.1.1]hexanes. Angew. Chem. Int. Ed. 62, e202310066 (2023).

    Article  CAS  Google Scholar 

  31. Ni, D. et al. Intermolecular formal cycloaddition of indoles with bicyclo[1.1.0]butanes by Lewis acid catalysis. Angew. Chem. Int. Ed. 62, e20230860 (2023).

    Article  Google Scholar 

  32. Radhoff, N., Daniliuc, C. G. & Studer, A. Lewis acid catalyzed formal (3 + 2)-cycloaddition of bicyclo[1.1.0]butanes with ketenes. Angew. Chem. Int. Ed. 62, e202304771 (2023).

    Article  CAS  Google Scholar 

  33. Zhang, J., Su, J.-Y. & Zheng, H. et al. Eu(OTf)3-catalyzed formal dipolar [4π + 2σ] cycloaddition of bicyclo-[1.1.0]butanes with nitrones: access to polysubstituted 2-oxa-3-azabicyclo[3.1.1]heptanes. Angew. Chem. Int. Ed. 63, e202318476 (2024).

    Article  CAS  Google Scholar 

  34. Liang, Y. et al. Silver-enabled cycloaddition of bicyclobutanes with isocyanides for the synthesis of polysubstituted 3-azabicyclo[3.1.1]heptanes. Angew. Chem. Int. Ed. 63, e202402730 (2024).

    Article  CAS  Google Scholar 

  35. Zheng, Y. et al. Photochemical intermolecular [3σ + 2σ]-cycloaddition for the construction of aminobicyclo[3.1.1]heptanes. J. Am. Chem. Soc. 144, 23685–23690 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yu, T. et al. Selective [2σ + 2σ] cycloaddition enabled by boronyl radical catalysis: synthesis of highly substituted bicyclo[3.1.1] heptanes. J. Am. Chem. Soc. 145, 4304–4310 (2023).

    Article  CAS  Google Scholar 

  37. Bellotti, P. & Glorius, F. Strain-release photocatalysis. J. Am. Chem. Soc. 145, 20716–20732 (2023).

    Article  CAS  PubMed  Google Scholar 

  38. Liu, Y. et al. Pyridine-boryl radical-catalyzed [2π + 2σ] cycloaddition of bicyclo[1.1.0]butanes with alkenes. ACS Catal. 13, 5096–5103 (2023).

    Article  CAS  Google Scholar 

  39. Walczak, M. A., Krainz, T. & Wipf, P. Ring-strain-enabled reaction discovery: new heterocycles from bicyclo[1.1.0]butanes. Acc. Chem. Res. 48, 1149–1158 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Guo, R. et al. Strain-release [2π + 2σ] cycloadditions for the synthesis of bicyclo[2.1.1]hexanes initiated by energy transfer. J. Am. Chem. Soc. 144, 7988–7994 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liang, Y. et al. Synthesis of polysubstituted 2-oxabicyclo[2.1.1]hexanes via visible-light-induced energy transfer. J. Am. Chem. Soc. 144, 20207–20213 (2022).

    Article  CAS  PubMed  Google Scholar 

  42. Kleinmans, R. et al. ortho-Selective dearomative [2π + 2σ] photocycloadditions of bicyclic aza-arenes. J. Am. Chem. Soc. 145, 12324–12332 (2023).

    Article  CAS  PubMed  Google Scholar 

  43. Robichon, M. et al. Enantioselective, intermolecular [π2 + σ2] photocycloaddition reactions of 2(1H)-quinolones and bicyclo[1.1.0]butanes. J. Am. Chem. Soc. 145, 24466–24470 (2023).

    Google Scholar 

  44. Dutta, S. et al. Photoredox-enabled dearomative [2π + 2σ] cycloaddition of phenols. J. Am. Chem. Soc. 146, 2789–2797 (2024).

    Article  CAS  PubMed  Google Scholar 

  45. Dutta, S. et al. Double strain-release [2π + 2σ]-photocycloaddition. J. Am. Chem. Soc. 146, 5232–5241 (2024).

    Article  CAS  PubMed  Google Scholar 

  46. Wang, H. et al. Dearomative ring expansion of thiophenes by bicyclobutane insertion. Science 381, 75–81 (2023).

    Article  CAS  PubMed  Google Scholar 

  47. Brooks, W. H., Guida, W. C. & Daniel, K. G. The significance and chirality in drug design and development. Curr. Top. Med. Chem. 11, 760–770 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Food and Drug Administration. FDA’s policy statement for the development of new stereoisomeric drugs. Chirality 4, 338–340 (1992).

    Article  Google Scholar 

  49. Investigation of Chiral Active Substances (European Medicines Agency, 1994).

  50. Fu, Q. et al. Enantioselective [2π + 2σ] cycloadditions of bicyclo[1.1.0]butanes with vinylazaarenes through asymmetric photoredox catalysis. J. Am. Chem. Soc. 146, 8372–8380 (2024).

    Article  CAS  PubMed  Google Scholar 

  51. Yang, C. et al. Development of dipolarophiles for catalytic asymmetric cycloadditions through Pd-π-allyl zwitterions. Chem. Rec. 21, 1442–1454 (2021).

    Article  CAS  PubMed  Google Scholar 

  52. Xu, B. et al. Recent advances in Pd-catalyzed asymmetric cyclization reactions. Chem. Soc. Rev. 53, 883–971 (2024).

    Article  CAS  PubMed  Google Scholar 

  53. Denisenko, A. et al. 2-Oxabicyclo[2.1.1]hexanes as saturated bioisosteres of the ortho-substituted phenyl ring. Nat. Chem. 15, 1155–1163 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Levterov, V. V. et al. 2-Oxabicyclo[2.2.2]octane as a new bioisostere of the phenyl ring. Nat. Commun. 14, 5608 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Levterov, V. V. et al. Water-soluble non-classical benzene mimetics. Angew. Chem. Int. Ed. 59, 7161–7167 (2020).

    Article  CAS  Google Scholar 

  56. Fawcett, A., Murtaza, A., Gregson, C. H. U. & Aggarwal, V. K. Strain-release-driven homologation of boronicesters: application to the modular synthesis of azetidines. J. Am. Chem. Soc. 141, 4573–4578 (2019).

    Article  CAS  PubMed  Google Scholar 

  57. Gregson, C. H. U., Noble, A. & Aggarwal, V. K. Divergent, strain-release reactions of azabicyclo[1.1.0]butyl carbinols: semipinacol or spiroepoxy azetidine formation. Angew. Chem. Int. Ed. 60, 7360–7365 (2021).

    Article  CAS  Google Scholar 

  58. Silvi, M. & Aggarwal, V. K. Radical addition to strained σ-bonds enables the stereocontrolled synthesis of cyclobutyl boronic esters. J. Am. Chem. Soc. 141, 9511–9515 (2019).

    Article  CAS  PubMed  Google Scholar 

  59. Fawcett, A., Biberger, T. & Aggarwal, V. K. Carbopalladation of C–C σ-bonds enabled by strained boronate complexes. Nat. Chem. 11, 117–122 (2019).

    Article  CAS  PubMed  Google Scholar 

  60. Pitzer, L., Schäfers, F. & Glorius, F. Rapid assessment of the reaction-condition-based sensitivity of chemical transformations. Angew. Chem. Int. Ed. 58, 8572–8576 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge funding support from the National Key R&D Program of China (numbers 2022YFA1503700, 2023YFA1506700), the National Natural Science Foundation of China (numbers 22071118, 22271162, 22188101) and the Natural Science Foundation of Tianjin (number 21JCZDJC00350). We thank the Haihe Laboratory of Sustainable Chemical Transformations and Frontiers Science Center for New Organic Matter for financial support. We thank F. Dean Toste for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

W.Z. conceived and supervised this work. T.Q. and M.H. conducted the studies and prepared the Supplementary Information. All the authors co-wrote the manuscript.

Corresponding author

Correspondence to Weiwei Zi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editor: Thomas West, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Experimental details, DFT calculations, X-ray crystallographic analysis and NMR spectra.

Supplementary Data 1

Crystallographic data for (S)-4o CCDC 2358250.

Supplementary Data 2

Crystallographic data for (R)-4ab CCDC 2325465.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, T., He, M. & Zi, W. Palladium-catalysed [2σ + 2π] cycloaddition reactions of bicyclo[1.1.0]butanes with aldehydes. Nat. Synth 4, 124–133 (2025). https://doi.org/10.1038/s44160-024-00659-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44160-024-00659-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing