Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Room-temperature epitaxy of α-CH3NH3PbI3 halide perovskite by pulsed laser deposition

Abstract

Epitaxial growth on lattice-(mis)matched substrates has advanced the understanding of semiconductors and enabled high-end technologies such as III-V-based light-emitting diodes. However, for metal halide perovskites, there is a knowledge gap in thin film heteroepitaxial growth, hindering progress towards new applications. Here we demonstrate the epitaxial growth of cubic (α)-CH3NH3PbI3 films on lattice-matched KCl substrates by pulsed laser deposition at room temperature. Epitaxial stabilization of α-CH3NH3PbI3 is confirmed via reciprocal space mapping, X-ray diffraction pole figures, electron backscatter diffraction and photoluminescence. A bandgap of 1.66 eV stable for over 300 days and Urbach energies of 12.3 meV for 15-nm-thick films are demonstrated. The impact of strain on α-phase stabilization is corroborated by first-principles density functional theory calculations, which also predict substantial bandgap tunability. This work demonstrates the potential of pulsed laser deposition for vapour-phase heteroepitaxial growth of metal halide perovskites, inspiring studies to unlock novel functionalities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Heteroepitaxy of halide perovskite thin films by PLD, a case of CH3NH3PbI3 on KCl.
Fig. 2: Structural insights from XRD.
Fig. 3: Structural insights from RSMs and PFs from XRD, SEM and electron backscattering diffraction.
Fig. 4: Epitaxial growth on lattice-mismatched substrates.
Fig. 5: Epitaxial strain-dependent bandgap calculations of CH3NH3PbI3 phases using first-principles DFT.
Fig. 6: Influence of thickness on PL and Urbach energy.
Fig. 7: Charge-carrier transport and recombination for 15-nm-thick and 70-nm thick α-CH3NH3PbI3 films on KCl.

Similar content being viewed by others

Data availability

Source data are provided with this paper. Supplementary data are available in the Supplementary Information.

References

  1. Kim, H., Han, J. S., Choi, J., Kim, S. Y. & Jang, H. W. Halide perovskites for applications beyond photovoltaics. Small Methods https://doi.org/10.1002/smtd.201700310 (2018).

    Article  Google Scholar 

  2. Stoumpos, C. C. & Kanatzidis, M. G. The renaissance of halide perovskites and their evolution as emerging semiconductors. Accounts Chem. Res. https://doi.org/10.1021/acs.accounts.5b00229 (2015).

  3. Jena, A. K., Kulkarni, A. & Miyasaka, T. Halide perovskite photovoltaics: background, status, and future prospects. Chem. Rev. 119, 3036–3103 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Ji, L., Hsu, H.-Y., Lee, J. C., Bard, A. J. & Yu, E. T. High-performance photodetectors based on solution-processed epitaxial grown hybrid halide perovskites. Nano Lett. 18, 994–1000 (2018).

    Article  CAS  PubMed  Google Scholar 

  5. Bourelle, S. A. et al. Optical control of exciton spin dynamics in layered metal halide perovskites via polaronic state formation. Nat. Commun. 13, 3320 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wang, J. et al. Spin-optoelectronic devices based on hybrid organic-inorganic trihalide perovskites. Nat. Commun. 10, 129 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ashoka, A. et al. Local symmetry breaking drives picosecond spin domain formation in polycrystalline halide perovskite films. Nat. Mater. 22, 977–984 (2023).

    Article  CAS  PubMed  Google Scholar 

  8. Li, Y., Zhang, X., Huang, H., Kershaw, S. V. & Rogach, A. L. Advances in metal halide perovskite nanocrystals: synthetic strategies, growth mechanisms, and optoelectronic applications. Mater. Today 32, 204–221 (2020).

    Article  CAS  Google Scholar 

  9. Fu, Y. et al. Metal halide perovskite nanostructures for optoelectronic applications and the study of physical properties. Nat. Rev. Mater. 4, 169–188 (2019).

    Article  CAS  Google Scholar 

  10. Wang, S. et al. Growth of metal halide perovskite materials. Sci. China Mater. 63, 1438–1463 (2020).

    Article  CAS  Google Scholar 

  11. Luo, J. et al. Vapour-deposited perovskite light-emitting diodes. Nat. Rev. Mater. https://doi.org/10.1038/s41578-024-00651-8 (2024).

  12. Calisi, N. et al. Thin films deposition of fully inorganic metal halide perovskites: a review. Mater. Sci. Semicond. Process. 147, 106721 (2022).

    Article  CAS  Google Scholar 

  13. Ma, H., Imran, M., Dang, Z. & Hu, Z. Growth of metal halide perovskite, from nanocrystal to micron-scale crystal: a review. Crystals 8, 182 (2018).

    Article  Google Scholar 

  14. Yan, S. et al. A templating approach to controlling the growth of coevaporated halide perovskites. ACS Energy Lett. 8, 4008–4015 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yang, M. & Kim, D. J. Flexo-photovoltaic effect. Science 360, 904–907 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Wang, L., King, I., Chen, P., Bates, M. & Lunt, R. R. Epitaxial and quasiepitaxial growth of halide perovskites: new routes to high end optoelectronics. APL Mater. 8, 10 (2020).

    Article  Google Scholar 

  17. Chen, Y. et al. Strain engineering and epitaxial stabilization of halide perovskites. Nature 577, 209–215 (2020).

    Article  CAS  PubMed  Google Scholar 

  18. Ahmad, R. et al. Solution-processed, highly crystalline, and oriented MAPbI3 thin films by engineering crystal-growth kinetics. Sol. RRL https://doi.org/10.1002/solr.202300746 (2023).

    Article  Google Scholar 

  19. Rusch, P. et al. Nanocrystal heterostructures based on halide perovskites and lead−bismuth chalcogenides. Chem. Mater. 35, 10684–10693 (2023).

    Article  CAS  Google Scholar 

  20. Wang, L. et al. Epitaxial stabilization of tetragonal cesium tin iodide. ACS Appl. Mater. Interf. 11, 32076–32083 (2019).

    Article  CAS  Google Scholar 

  21. Wang, L. et al. Unlocking the single-domain epitaxy of halide perovskites. Adv. Mater. Interf. 4, 1701003 (2017).

    Article  Google Scholar 

  22. Chen, J. et al. Single-crystal thin films of cesium lead bromide perovskite epitaxially grown on metal oxide perovskite (SrTiO3). J. Am. Chem. Soc. 139, 13525–13532 (2017).

    Article  CAS  PubMed  Google Scholar 

  23. Kong, D. et al. Heteroepitaxy of large-area, monocrystalline lead halide perovskite films on gallium arsenide. ACS Appl. Mater. Interf. 14, 52508–52515 (2022).

    Article  CAS  Google Scholar 

  24. Le, H. K. D. et al. Quantification of strain and its impact on the phase stabilization of all-inorganic cesium lead iodide perovskites. Matter 6, 2368–2382 (2023).

    Article  CAS  Google Scholar 

  25. Nasyedkin, K. et al. Extraordinary phase coherence length in epitaxial halide perovskites. iScience 24, 8 (2021).

    Article  Google Scholar 

  26. Zhu, Z. et al. Room-temperature epitaxial welding of 3D and 2D perovskites. Nat. Mater. 21, 1042–1049 (2022).

    Article  CAS  PubMed  Google Scholar 

  27. Shi, E. & Dou, L. Halide perovskite epitaxial heterostructures. Accounts Mater. Res. 1, 213–224 (2020).

    Article  CAS  Google Scholar 

  28. Graboy, I. E. et al. HREM study of epitaxially stabilized hexagonal rare earth manganites. Chem. Mater. 15, 2632–2637 (2003).

    Article  CAS  Google Scholar 

  29. Krebs, H.-U. et al. in Advances in Solid State Physics (ed. Kramer, B.) 505–518 (Springer, 2003).

  30. Shepelin, N. A. et al. A practical guide to pulsed laser deposition. Chem. Soc. Rev. 52, 2294–2321 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Eason, R. (ed.). Pulsed Laser Deposition of Thin Films: Applications-Led Growth of Functional Materials. (John Wiley & Sons, 2007).

  32. Koster, G. et al. Structure, physical properties, and applications of SrRuO3 thin films. Rev. Mod. Phys. 84, 253–298 (2012).

    Article  CAS  Google Scholar 

  33. Siemons, W. et al. Origin of charge density at LaAlO3 on SrTiO3 heterointerfaces: possibility of intrinsic doping. Phys. Rev. Lett. 98, 196802 (2007).

    Article  PubMed  Google Scholar 

  34. Kiyek, V. M. et al. Single-source, solvent-free, room temperature deposition of black γ-CsSnI3 films. Adv. Mater. Interf. https://doi.org/10.1002/admi.202000162 (2020).

    Article  Google Scholar 

  35. Wang, H. et al. Pulsed laser deposition of CsPbBr3 films for application in perovskite solar cells. ACS Appl. Energy Mater. 2, 2305–2312 (2019).

    Article  CAS  Google Scholar 

  36. Rodkey, N. et al. Pulsed laser deposition of Cs2AgBiBr6: from mechanochemically synthesized powders to dry, single-step deposition. Chem. Mater. 33, 7417–7422 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bansode, U. & Ogale, S. On-axis pulsed laser deposition of hybrid perovskite films for solar cell and broadband photo-sensor applications. J. Appl. Phys. 121, 133107 (2017).

    Article  Google Scholar 

  38. Soto-Montero, T. et al. Single‐source vapor‐deposition of MA1–xFAxPbI3 perovskite absorbers for solar cells. Adv. Funct. Mater. https://doi.org/10.1002/adfm.202300588 (2023).

  39. Soto-Montero, T. & Morales-Masis, M. Laser deposition of metal halide perovskites. ACS Energy Lett. https://doi.org/10.1021/acsenergylett.4c01466 (2024).

  40. Gao, W. et al. Development and prospects of halide perovskite single crystal films. Adv. Electron. Mater. https://doi.org/10.1002/aelm.202100980 (2022).

  41. Zhou, Y. et al. Stable CsPbX3 mixed halide alloyed epitaxial films prepared by pulsed laser deposition. Appl. Phys. Lett. 120, 112109 (2022).

    Article  CAS  Google Scholar 

  42. Goh, W. C., Xu, S. Y., Wang, S. J. & Ong, C. K. Microstructure and growth mode at early growth stage of laser-ablated epitaxial Pb(Zr0.52Ti0.48)O3 films on a SrTiO3 substrate. J. Appl. Phys. 89, 4497–4502 (2001).

    Article  CAS  Google Scholar 

  43. Cao, L. X. et al. A structural investigation of high-quality epitaxial Pb(Zr,Ti)O3 thin films. J. Phys. D 30, 1455–1458 (1997).

    Article  CAS  Google Scholar 

  44. Liu, L., Zhao, Z., Liu, H. & Li, Y. Effect of deposition temperature on the epitaxial growth of YBCO thin films on RABiTS substrates by pulsed laser deposition method. IEEE Trans. Appl. Supercond. 20, 1553–1556 (2010).

    Article  CAS  Google Scholar 

  45. Nunnenkamp, M. et al. Using a perovskite oxide buffer layer on Ca2Nb3O10 nanosheets for the epitaxial growth of Pb(Zr0.52Ti0.48)O3 for electrode-free thin films. Thin Solid Films 790, 140190 (2024).

    Article  CAS  Google Scholar 

  46. Leppert, L., Reyes-Lillo, S. E. & Neaton, J. B. Electric field- and strain-induced rashba effect in hybrid halide perovskites. J. Phys. Chem. Lett. 7, 3683–3689 (2016).

    Article  CAS  PubMed  Google Scholar 

  47. Grote, C. & Berger, R. F. Strain tuning of tin-halide and lead-halide perovskites: a first-principles atomic and electronic structure study. J. Phys. Chem. C 119, 22832–22837 (2015).

    Article  CAS  Google Scholar 

  48. Song, G., Gao, B., Li, G. & Zhang, J. First-principles study on the electric structure and ferroelectricity in epitaxial CsSnI3 films. RSC Adv. 7, 41077–41083 (2017).

    Article  CAS  Google Scholar 

  49. Zhang, W. et al. Unified picture for the pressure-controlled band gap in inorganic halide perovskites: Role of strain-phonon and phonon-phonon couplings. Phys. Rev. B 105, 075150 (2022).

    Article  CAS  Google Scholar 

  50. Soto-Montero, T., Soltanpoor, W. & Morales-Masis, M. Pressing challenges of halide perovskite thin film growth. APL Mater. 8, 110903 (2020).

    Article  CAS  Google Scholar 

  51. Biega, R.-I. & Leppert, L. Halogen vacancy migration at surfaces of CsPbBr3 perovskites: insights from density functional theory. J. Phys. Energy 3, 034017 (2021).

    Article  CAS  Google Scholar 

  52. Yang, J. P. et al. Band dispersion and hole effective mass of methylammonium lead iodide perovskite. Sol. RRL https://doi.org/10.1002/solr.201800132 (2018).

    Article  Google Scholar 

  53. Whitfield, P. S. et al. Structures, phase transitions and tricritical behavior of the hybrid perovskite methyl ammonium lead iodide. Sci. Rep. 6, 35685 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Brivio, F. et al. Lattice dynamics and vibrational spectra of the orthorhombic, tetragonal, and cubic phases of methylammonium lead iodide. Phys. Rev. B 92, 144308 (2015).

    Article  Google Scholar 

  55. Frost, J. M. et al. Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano Lett. 14, 2584–2590 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Soto-Montero, T. et al. Single-source pulsed laser deposition of MAPbI3. In 2021 IEEE 48th Photovoltaic Specialists Conference (PVSC). 1318–1323 (IEEE, 2021).

  57. Heinze, K. L. et al. Importance of methylammonium iodide partial pressure and evaporation onset for the growth of co-evaporated methylammonium lead iodide absorbers. Sci. Rep. 11, 15299 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Heidrich, R. et al. Impact of dynamic co-evaporation schemes on the growth of methylammonium lead iodide absorbers for inverted solar cells. Sci. Rep. 12, 19167 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Frohna, K. et al. Inversion symmetry and bulk Rashba effect in methylammonium lead iodide perovskite single crystals. Nat. Commun. 9, 1829 (2018).

  60. Gehrmann, C. & Egger, D. A. Dynamic shortening of disorder potentials in anharmonic halide perovskites. Nat. Commun. 10, 3141 (2019).

  61. Seidl, S. A. et al. Anharmonic fluctuations govern the band gap of halide perovskites. Phys. Rev. Mater. 7, L092401 (2023).

    Article  CAS  Google Scholar 

  62. Quarti, C. et al. Structural and optical properties of methylammonium lead iodide across the tetragonal to cubic phase transition: implications for perovskite solar cells. Energy Environ. Sci. 9, 155–163 (2016).

    Article  CAS  Google Scholar 

  63. De Bastiani, M. et al. Monolithic perovskite/silicon tandems with >28% efficiency: role of silicon-surface texture on perovskite properties. Adv. Funct. Mater. https://doi.org/10.1002/adfm.202205557 (2023).

    Article  Google Scholar 

  64. Wang, M. et al. Impact of photoluminescence reabsorption in metal-halide perovskite solar cells. Sol. RRL https://doi.org/10.1002/solr.202100029 (2021).

    Article  Google Scholar 

  65. Ledinsky, M. et al. Temperature dependence of the Urbach energy in lead iodide perovskites. J. Phys. Chem. Lett. 10, 1368–1373 (2019).

    Article  CAS  PubMed  Google Scholar 

  66. Trimpl, M. J. et al. Charge-carrier trapping and radiative recombination in metal halide perovskite semiconductors. Adv. Funct. Mater. https://doi.org/10.1002/adfm.202004312 (2020).

    Article  Google Scholar 

  67. Ulatowski, A. M. et al. Contrasting charge-carrier dynamics across key metal-halide perovskite compositions through in situ simultaneous probes. Adv. Funct. Mater. https://doi.org/10.1002/adfm.202305283 (2023).

    Article  Google Scholar 

  68. Yamada, Y., Yamada, T., Shimazaki, A., Wakamiya, A. & Kanemitsu, Y. Interfacial charge-carrier trapping in CH3NH3PbI3-based heterolayered structures revealed by time-resolved photoluminescence spectroscopy. J. Phys. Chem. Lett. 7, 1972–1977 (2016).

    Article  CAS  PubMed  Google Scholar 

  69. Herz, L. M. Charge-carrier mobilities in metal halide perovskites: fundamental mechanisms and limits. ACS Energy Lett. 2, 1539–1548 (2017).

    Article  CAS  Google Scholar 

  70. Motti, S. G. et al. CsPbBr3 nanocrystal films: deviations from bulk vibrational and optoelectronic properties. Adv. Funct. Mater. https://doi.org/10.1002/adfm.201909904 (2020).

    Article  Google Scholar 

  71. Zhou, Z., Qiao, H. W., Hou, Y., Yang, H. G. & Yang, S. Epitaxial halide perovskite-based materials for photoelectric energy conversion. Energy Environ. Sci. 14, 127–157 (2021).

    Article  CAS  Google Scholar 

  72. Theis, C. D., Yeh, J., Schlom, D. G., Hawley, M. E. & Brown, G. W. Adsorption-controlled growth of PbTiO3 by reactive molecular beam epitaxy. Thin Solid Films 325, 107–114 (1998).

    Article  CAS  Google Scholar 

  73. Gallon, T. E. et al. The (100) surfaces of alkali halides: I. The air and vacuum cleaved surfaces. Surf. Sci. 21, 224–232 (1970).

    Article  CAS  Google Scholar 

  74. Ohnishi, T., Lippmaa, M., Yamamoto, T., Meguro, S. & Koinuma, H. Improved stoichiometry and misfit control in perovskite thin film formation at a critical fluence by pulsed laser deposition. Appl. Phys. Lett. 87, 241919 (2005).

    Article  Google Scholar 

  75. Sata, N., Shibata, Y., Iguchi, F. & Yugami, H. Crystallization process of perovskite type oxide thin films deposited by PLD without substrate heating: influence of sputtering rate and densification-driven high tensile strain. Solid State Ionics 275, 14–18 (2015).

    Article  CAS  Google Scholar 

  76. Jang, S. Y., Moon, S. J., Jeon, B. C. & Chung, J. S. PLD growth of epitaxially-stabilized 5d perovskite SrIrO3 thin films. J. Korean Phys. Soc. 56, 1814–1817 (2010).

    Article  CAS  Google Scholar 

  77. Vargas-Hernández, R. A. Bayesian optimization for calibrating and selecting hybrid-density functional models. J. Phys. Chem. A 124, 4053–4061 (2020).

    Article  PubMed  Google Scholar 

  78. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  PubMed  Google Scholar 

  79. Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  Google Scholar 

  80. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  81. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  PubMed  Google Scholar 

  82. Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207–8215 (2003).

    Article  CAS  Google Scholar 

  83. Wooster, W. A. & Moeller, C. K. Crystal structure and photoconductivity of caesium plumbohalides. Proc. Arner. Acad. 93, 131 (1936).

    Google Scholar 

  84. Marronnier, A. et al. Anharmonicity and disorder in the black phases of cesium lead iodide used for stable inorganic perovskite solar cells. ACS Nano 12, 3477–3486 (2018).

    Article  CAS  PubMed  Google Scholar 

  85. Mannodi-Kanakkithodi, A., Park, J. S., Martinson, A. B. F. & Chan, M. K. Y. Defect energetics in pseudo-cubic mixed halide lead perovskites from first-principles. J. Phys. Chem. C 124, 16729–16738 (2020).

    Article  CAS  Google Scholar 

  86. Crothers, T. W. et al. Photon reabsorption masks intrinsic bimolecular charge-carrier recombination in CH3NH3PbI3 perovskite. Nano Lett. 17, 5782–5789 (2017).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the technical support from the TSST part of Demcon, Dominic Post and the MESA+ staff, M. A. Smithers, M. J. Goodwin and M. Tsvetanova for performing the SEM, FIB and TEM measurements, respectively. This work is financed by the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Program (CREATE, grant agreement no. 852722) received by M.M.-M. N.O. and E.C.G. acknowledge the Dutch Research Council (NWO), Gatan (EDAX), Amsterdam Scientific Instruments (ASI) and CL Solutions for financing the project ‘Achieving Semiconductor Stability From The Ground Up’ (project number 19459), which enabled the EBSD characterization. N.F.-C. and S.E.R.-L. acknowledge the financial support from ANID FONDECYT Regular grant number 1220986. N.F.C. acknowledges partial financial support from the project InTec, code ‘FRO2395’, from the Ministry of Education of Chile. Powered@NLHPC: This research was partially supported by the supercomputing infrastructure of the National Laboratory for High Performance Computing (NLHPC) (CCSS210001). M.L. acknowledges the support of the Czech Science Foundation (project no. 23-06598S) and the use of the CzechNanoLab research infrastructure supported by the MEYS (project no. LM2023051). T.B.H. and L.M.H. acknowledge financial support from the Engineering and Physical Sciences Research Council (EPSRC). J.R.S.L. thanks Oxford Photovoltaics for additional support as part of an EPSRC Industrial CASE studentship.

Author information

Authors and Affiliations

Authors

Contributions

J.S.S. and M.M.-M. conceived the idea. J.S.S. and T.S.-M. performed the initial optimization of the deposition. J.S.S. prepared the thin films by PLD and performed the XRD, PL and AFM measurements and analysis. Y.A.B. and D.M.C. supported RSMs, XRD PF measurements and analysis. G.K. and G.R. provided advisory support for the discussion of results from RSM and XRD PF measurements and analysis. N.O. and E.C.G. performed the EBSD and synchrotron XRD measurements and analysis. M.L. guided PL and Urbach energy analysis. T.B.H., J.R.S.L. and L.M.H. performed the time-resolved spectroscopic measurements and analysis. N.F.-C., S.E.R.-L. and L.L. performed the theoretical calculations. J.S.S., T.S.-M., Y.A.B., D.M.C., W.S., S.E.R.-L., L.L. and M.M.-M. performed the investigation. J.S.S., T.S.-M., Y.A.B., N.O., M.L., S.E.R.-L., L.L. and M.M.-M. worked on the visualization of the results. M.M.-M. supervised the overall work. J.S.S. and M.M.-M. wrote the paper with input from all the authors. All the coauthors analysed and discussed the results.

Corresponding authors

Correspondence to Junia S. Solomon or Monica Morales-Masis.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editor: Alexandra Groves, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–13 and Tables 1–3.

Supplementary Video 1

Scotch tape experiment to demonstrate the strong interactions between the substrate and the adlayer.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

DFT data.

Source Data Fig. 6

Statistical source data.

Source Data Fig. 7

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solomon, J.S., Soto-Montero, T., Birkhölzer, Y.A. et al. Room-temperature epitaxy of α-CH3NH3PbI3 halide perovskite by pulsed laser deposition. Nat. Synth 4, 432–443 (2025). https://doi.org/10.1038/s44160-024-00717-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44160-024-00717-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing