Abstract
Epitaxial growth on lattice-(mis)matched substrates has advanced the understanding of semiconductors and enabled high-end technologies such as III-V-based light-emitting diodes. However, for metal halide perovskites, there is a knowledge gap in thin film heteroepitaxial growth, hindering progress towards new applications. Here we demonstrate the epitaxial growth of cubic (α)-CH3NH3PbI3 films on lattice-matched KCl substrates by pulsed laser deposition at room temperature. Epitaxial stabilization of α-CH3NH3PbI3 is confirmed via reciprocal space mapping, X-ray diffraction pole figures, electron backscatter diffraction and photoluminescence. A bandgap of 1.66 eV stable for over 300 days and Urbach energies of 12.3 meV for 15-nm-thick films are demonstrated. The impact of strain on α-phase stabilization is corroborated by first-principles density functional theory calculations, which also predict substantial bandgap tunability. This work demonstrates the potential of pulsed laser deposition for vapour-phase heteroepitaxial growth of metal halide perovskites, inspiring studies to unlock novel functionalities.

This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout







Similar content being viewed by others
Data availability
Source data are provided with this paper. Supplementary data are available in the Supplementary Information.
References
Kim, H., Han, J. S., Choi, J., Kim, S. Y. & Jang, H. W. Halide perovskites for applications beyond photovoltaics. Small Methods https://doi.org/10.1002/smtd.201700310 (2018).
Stoumpos, C. C. & Kanatzidis, M. G. The renaissance of halide perovskites and their evolution as emerging semiconductors. Accounts Chem. Res. https://doi.org/10.1021/acs.accounts.5b00229 (2015).
Jena, A. K., Kulkarni, A. & Miyasaka, T. Halide perovskite photovoltaics: background, status, and future prospects. Chem. Rev. 119, 3036–3103 (2019).
Ji, L., Hsu, H.-Y., Lee, J. C., Bard, A. J. & Yu, E. T. High-performance photodetectors based on solution-processed epitaxial grown hybrid halide perovskites. Nano Lett. 18, 994–1000 (2018).
Bourelle, S. A. et al. Optical control of exciton spin dynamics in layered metal halide perovskites via polaronic state formation. Nat. Commun. 13, 3320 (2022).
Wang, J. et al. Spin-optoelectronic devices based on hybrid organic-inorganic trihalide perovskites. Nat. Commun. 10, 129 (2019).
Ashoka, A. et al. Local symmetry breaking drives picosecond spin domain formation in polycrystalline halide perovskite films. Nat. Mater. 22, 977–984 (2023).
Li, Y., Zhang, X., Huang, H., Kershaw, S. V. & Rogach, A. L. Advances in metal halide perovskite nanocrystals: synthetic strategies, growth mechanisms, and optoelectronic applications. Mater. Today 32, 204–221 (2020).
Fu, Y. et al. Metal halide perovskite nanostructures for optoelectronic applications and the study of physical properties. Nat. Rev. Mater. 4, 169–188 (2019).
Wang, S. et al. Growth of metal halide perovskite materials. Sci. China Mater. 63, 1438–1463 (2020).
Luo, J. et al. Vapour-deposited perovskite light-emitting diodes. Nat. Rev. Mater. https://doi.org/10.1038/s41578-024-00651-8 (2024).
Calisi, N. et al. Thin films deposition of fully inorganic metal halide perovskites: a review. Mater. Sci. Semicond. Process. 147, 106721 (2022).
Ma, H., Imran, M., Dang, Z. & Hu, Z. Growth of metal halide perovskite, from nanocrystal to micron-scale crystal: a review. Crystals 8, 182 (2018).
Yan, S. et al. A templating approach to controlling the growth of coevaporated halide perovskites. ACS Energy Lett. 8, 4008–4015 (2023).
Yang, M. & Kim, D. J. Flexo-photovoltaic effect. Science 360, 904–907 (2018).
Wang, L., King, I., Chen, P., Bates, M. & Lunt, R. R. Epitaxial and quasiepitaxial growth of halide perovskites: new routes to high end optoelectronics. APL Mater. 8, 10 (2020).
Chen, Y. et al. Strain engineering and epitaxial stabilization of halide perovskites. Nature 577, 209–215 (2020).
Ahmad, R. et al. Solution-processed, highly crystalline, and oriented MAPbI3 thin films by engineering crystal-growth kinetics. Sol. RRL https://doi.org/10.1002/solr.202300746 (2023).
Rusch, P. et al. Nanocrystal heterostructures based on halide perovskites and lead−bismuth chalcogenides. Chem. Mater. 35, 10684–10693 (2023).
Wang, L. et al. Epitaxial stabilization of tetragonal cesium tin iodide. ACS Appl. Mater. Interf. 11, 32076–32083 (2019).
Wang, L. et al. Unlocking the single-domain epitaxy of halide perovskites. Adv. Mater. Interf. 4, 1701003 (2017).
Chen, J. et al. Single-crystal thin films of cesium lead bromide perovskite epitaxially grown on metal oxide perovskite (SrTiO3). J. Am. Chem. Soc. 139, 13525–13532 (2017).
Kong, D. et al. Heteroepitaxy of large-area, monocrystalline lead halide perovskite films on gallium arsenide. ACS Appl. Mater. Interf. 14, 52508–52515 (2022).
Le, H. K. D. et al. Quantification of strain and its impact on the phase stabilization of all-inorganic cesium lead iodide perovskites. Matter 6, 2368–2382 (2023).
Nasyedkin, K. et al. Extraordinary phase coherence length in epitaxial halide perovskites. iScience 24, 8 (2021).
Zhu, Z. et al. Room-temperature epitaxial welding of 3D and 2D perovskites. Nat. Mater. 21, 1042–1049 (2022).
Shi, E. & Dou, L. Halide perovskite epitaxial heterostructures. Accounts Mater. Res. 1, 213–224 (2020).
Graboy, I. E. et al. HREM study of epitaxially stabilized hexagonal rare earth manganites. Chem. Mater. 15, 2632–2637 (2003).
Krebs, H.-U. et al. in Advances in Solid State Physics (ed. Kramer, B.) 505–518 (Springer, 2003).
Shepelin, N. A. et al. A practical guide to pulsed laser deposition. Chem. Soc. Rev. 52, 2294–2321 (2023).
Eason, R. (ed.). Pulsed Laser Deposition of Thin Films: Applications-Led Growth of Functional Materials. (John Wiley & Sons, 2007).
Koster, G. et al. Structure, physical properties, and applications of SrRuO3 thin films. Rev. Mod. Phys. 84, 253–298 (2012).
Siemons, W. et al. Origin of charge density at LaAlO3 on SrTiO3 heterointerfaces: possibility of intrinsic doping. Phys. Rev. Lett. 98, 196802 (2007).
Kiyek, V. M. et al. Single-source, solvent-free, room temperature deposition of black γ-CsSnI3 films. Adv. Mater. Interf. https://doi.org/10.1002/admi.202000162 (2020).
Wang, H. et al. Pulsed laser deposition of CsPbBr3 films for application in perovskite solar cells. ACS Appl. Energy Mater. 2, 2305–2312 (2019).
Rodkey, N. et al. Pulsed laser deposition of Cs2AgBiBr6: from mechanochemically synthesized powders to dry, single-step deposition. Chem. Mater. 33, 7417–7422 (2021).
Bansode, U. & Ogale, S. On-axis pulsed laser deposition of hybrid perovskite films for solar cell and broadband photo-sensor applications. J. Appl. Phys. 121, 133107 (2017).
Soto-Montero, T. et al. Single‐source vapor‐deposition of MA1–xFAxPbI3 perovskite absorbers for solar cells. Adv. Funct. Mater. https://doi.org/10.1002/adfm.202300588 (2023).
Soto-Montero, T. & Morales-Masis, M. Laser deposition of metal halide perovskites. ACS Energy Lett. https://doi.org/10.1021/acsenergylett.4c01466 (2024).
Gao, W. et al. Development and prospects of halide perovskite single crystal films. Adv. Electron. Mater. https://doi.org/10.1002/aelm.202100980 (2022).
Zhou, Y. et al. Stable CsPbX3 mixed halide alloyed epitaxial films prepared by pulsed laser deposition. Appl. Phys. Lett. 120, 112109 (2022).
Goh, W. C., Xu, S. Y., Wang, S. J. & Ong, C. K. Microstructure and growth mode at early growth stage of laser-ablated epitaxial Pb(Zr0.52Ti0.48)O3 films on a SrTiO3 substrate. J. Appl. Phys. 89, 4497–4502 (2001).
Cao, L. X. et al. A structural investigation of high-quality epitaxial Pb(Zr,Ti)O3 thin films. J. Phys. D 30, 1455–1458 (1997).
Liu, L., Zhao, Z., Liu, H. & Li, Y. Effect of deposition temperature on the epitaxial growth of YBCO thin films on RABiTS substrates by pulsed laser deposition method. IEEE Trans. Appl. Supercond. 20, 1553–1556 (2010).
Nunnenkamp, M. et al. Using a perovskite oxide buffer layer on Ca2Nb3O10 nanosheets for the epitaxial growth of Pb(Zr0.52Ti0.48)O3 for electrode-free thin films. Thin Solid Films 790, 140190 (2024).
Leppert, L., Reyes-Lillo, S. E. & Neaton, J. B. Electric field- and strain-induced rashba effect in hybrid halide perovskites. J. Phys. Chem. Lett. 7, 3683–3689 (2016).
Grote, C. & Berger, R. F. Strain tuning of tin-halide and lead-halide perovskites: a first-principles atomic and electronic structure study. J. Phys. Chem. C 119, 22832–22837 (2015).
Song, G., Gao, B., Li, G. & Zhang, J. First-principles study on the electric structure and ferroelectricity in epitaxial CsSnI3 films. RSC Adv. 7, 41077–41083 (2017).
Zhang, W. et al. Unified picture for the pressure-controlled band gap in inorganic halide perovskites: Role of strain-phonon and phonon-phonon couplings. Phys. Rev. B 105, 075150 (2022).
Soto-Montero, T., Soltanpoor, W. & Morales-Masis, M. Pressing challenges of halide perovskite thin film growth. APL Mater. 8, 110903 (2020).
Biega, R.-I. & Leppert, L. Halogen vacancy migration at surfaces of CsPbBr3 perovskites: insights from density functional theory. J. Phys. Energy 3, 034017 (2021).
Yang, J. P. et al. Band dispersion and hole effective mass of methylammonium lead iodide perovskite. Sol. RRL https://doi.org/10.1002/solr.201800132 (2018).
Whitfield, P. S. et al. Structures, phase transitions and tricritical behavior of the hybrid perovskite methyl ammonium lead iodide. Sci. Rep. 6, 35685 (2016).
Brivio, F. et al. Lattice dynamics and vibrational spectra of the orthorhombic, tetragonal, and cubic phases of methylammonium lead iodide. Phys. Rev. B 92, 144308 (2015).
Frost, J. M. et al. Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano Lett. 14, 2584–2590 (2014).
Soto-Montero, T. et al. Single-source pulsed laser deposition of MAPbI3. In 2021 IEEE 48th Photovoltaic Specialists Conference (PVSC). 1318–1323 (IEEE, 2021).
Heinze, K. L. et al. Importance of methylammonium iodide partial pressure and evaporation onset for the growth of co-evaporated methylammonium lead iodide absorbers. Sci. Rep. 11, 15299 (2021).
Heidrich, R. et al. Impact of dynamic co-evaporation schemes on the growth of methylammonium lead iodide absorbers for inverted solar cells. Sci. Rep. 12, 19167 (2022).
Frohna, K. et al. Inversion symmetry and bulk Rashba effect in methylammonium lead iodide perovskite single crystals. Nat. Commun. 9, 1829 (2018).
Gehrmann, C. & Egger, D. A. Dynamic shortening of disorder potentials in anharmonic halide perovskites. Nat. Commun. 10, 3141 (2019).
Seidl, S. A. et al. Anharmonic fluctuations govern the band gap of halide perovskites. Phys. Rev. Mater. 7, L092401 (2023).
Quarti, C. et al. Structural and optical properties of methylammonium lead iodide across the tetragonal to cubic phase transition: implications for perovskite solar cells. Energy Environ. Sci. 9, 155–163 (2016).
De Bastiani, M. et al. Monolithic perovskite/silicon tandems with >28% efficiency: role of silicon-surface texture on perovskite properties. Adv. Funct. Mater. https://doi.org/10.1002/adfm.202205557 (2023).
Wang, M. et al. Impact of photoluminescence reabsorption in metal-halide perovskite solar cells. Sol. RRL https://doi.org/10.1002/solr.202100029 (2021).
Ledinsky, M. et al. Temperature dependence of the Urbach energy in lead iodide perovskites. J. Phys. Chem. Lett. 10, 1368–1373 (2019).
Trimpl, M. J. et al. Charge-carrier trapping and radiative recombination in metal halide perovskite semiconductors. Adv. Funct. Mater. https://doi.org/10.1002/adfm.202004312 (2020).
Ulatowski, A. M. et al. Contrasting charge-carrier dynamics across key metal-halide perovskite compositions through in situ simultaneous probes. Adv. Funct. Mater. https://doi.org/10.1002/adfm.202305283 (2023).
Yamada, Y., Yamada, T., Shimazaki, A., Wakamiya, A. & Kanemitsu, Y. Interfacial charge-carrier trapping in CH3NH3PbI3-based heterolayered structures revealed by time-resolved photoluminescence spectroscopy. J. Phys. Chem. Lett. 7, 1972–1977 (2016).
Herz, L. M. Charge-carrier mobilities in metal halide perovskites: fundamental mechanisms and limits. ACS Energy Lett. 2, 1539–1548 (2017).
Motti, S. G. et al. CsPbBr3 nanocrystal films: deviations from bulk vibrational and optoelectronic properties. Adv. Funct. Mater. https://doi.org/10.1002/adfm.201909904 (2020).
Zhou, Z., Qiao, H. W., Hou, Y., Yang, H. G. & Yang, S. Epitaxial halide perovskite-based materials for photoelectric energy conversion. Energy Environ. Sci. 14, 127–157 (2021).
Theis, C. D., Yeh, J., Schlom, D. G., Hawley, M. E. & Brown, G. W. Adsorption-controlled growth of PbTiO3 by reactive molecular beam epitaxy. Thin Solid Films 325, 107–114 (1998).
Gallon, T. E. et al. The (100) surfaces of alkali halides: I. The air and vacuum cleaved surfaces. Surf. Sci. 21, 224–232 (1970).
Ohnishi, T., Lippmaa, M., Yamamoto, T., Meguro, S. & Koinuma, H. Improved stoichiometry and misfit control in perovskite thin film formation at a critical fluence by pulsed laser deposition. Appl. Phys. Lett. 87, 241919 (2005).
Sata, N., Shibata, Y., Iguchi, F. & Yugami, H. Crystallization process of perovskite type oxide thin films deposited by PLD without substrate heating: influence of sputtering rate and densification-driven high tensile strain. Solid State Ionics 275, 14–18 (2015).
Jang, S. Y., Moon, S. J., Jeon, B. C. & Chung, J. S. PLD growth of epitaxially-stabilized 5d perovskite SrIrO3 thin films. J. Korean Phys. Soc. 56, 1814–1817 (2010).
Vargas-Hernández, R. A. Bayesian optimization for calibrating and selecting hybrid-density functional models. J. Phys. Chem. A 124, 4053–4061 (2020).
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).
Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).
Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207–8215 (2003).
Wooster, W. A. & Moeller, C. K. Crystal structure and photoconductivity of caesium plumbohalides. Proc. Arner. Acad. 93, 131 (1936).
Marronnier, A. et al. Anharmonicity and disorder in the black phases of cesium lead iodide used for stable inorganic perovskite solar cells. ACS Nano 12, 3477–3486 (2018).
Mannodi-Kanakkithodi, A., Park, J. S., Martinson, A. B. F. & Chan, M. K. Y. Defect energetics in pseudo-cubic mixed halide lead perovskites from first-principles. J. Phys. Chem. C 124, 16729–16738 (2020).
Crothers, T. W. et al. Photon reabsorption masks intrinsic bimolecular charge-carrier recombination in CH3NH3PbI3 perovskite. Nano Lett. 17, 5782–5789 (2017).
Acknowledgements
We acknowledge the technical support from the TSST part of Demcon, Dominic Post and the MESA+ staff, M. A. Smithers, M. J. Goodwin and M. Tsvetanova for performing the SEM, FIB and TEM measurements, respectively. This work is financed by the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Program (CREATE, grant agreement no. 852722) received by M.M.-M. N.O. and E.C.G. acknowledge the Dutch Research Council (NWO), Gatan (EDAX), Amsterdam Scientific Instruments (ASI) and CL Solutions for financing the project ‘Achieving Semiconductor Stability From The Ground Up’ (project number 19459), which enabled the EBSD characterization. N.F.-C. and S.E.R.-L. acknowledge the financial support from ANID FONDECYT Regular grant number 1220986. N.F.C. acknowledges partial financial support from the project InTec, code ‘FRO2395’, from the Ministry of Education of Chile. Powered@NLHPC: This research was partially supported by the supercomputing infrastructure of the National Laboratory for High Performance Computing (NLHPC) (CCSS210001). M.L. acknowledges the support of the Czech Science Foundation (project no. 23-06598S) and the use of the CzechNanoLab research infrastructure supported by the MEYS (project no. LM2023051). T.B.H. and L.M.H. acknowledge financial support from the Engineering and Physical Sciences Research Council (EPSRC). J.R.S.L. thanks Oxford Photovoltaics for additional support as part of an EPSRC Industrial CASE studentship.
Author information
Authors and Affiliations
Contributions
J.S.S. and M.M.-M. conceived the idea. J.S.S. and T.S.-M. performed the initial optimization of the deposition. J.S.S. prepared the thin films by PLD and performed the XRD, PL and AFM measurements and analysis. Y.A.B. and D.M.C. supported RSMs, XRD PF measurements and analysis. G.K. and G.R. provided advisory support for the discussion of results from RSM and XRD PF measurements and analysis. N.O. and E.C.G. performed the EBSD and synchrotron XRD measurements and analysis. M.L. guided PL and Urbach energy analysis. T.B.H., J.R.S.L. and L.M.H. performed the time-resolved spectroscopic measurements and analysis. N.F.-C., S.E.R.-L. and L.L. performed the theoretical calculations. J.S.S., T.S.-M., Y.A.B., D.M.C., W.S., S.E.R.-L., L.L. and M.M.-M. performed the investigation. J.S.S., T.S.-M., Y.A.B., N.O., M.L., S.E.R.-L., L.L. and M.M.-M. worked on the visualization of the results. M.M.-M. supervised the overall work. J.S.S. and M.M.-M. wrote the paper with input from all the authors. All the coauthors analysed and discussed the results.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Synthesis thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editor: Alexandra Groves, in collaboration with the Nature Synthesis team.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Figs. 1–13 and Tables 1–3.
Supplementary Video 1
Scotch tape experiment to demonstrate the strong interactions between the substrate and the adlayer.
Source data
Source Data Fig. 2
Statistical source data.
Source Data Fig. 3
Statistical source data.
Source Data Fig. 4
Statistical source data.
Source Data Fig. 5
DFT data.
Source Data Fig. 6
Statistical source data.
Source Data Fig. 7
Statistical source data.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Solomon, J.S., Soto-Montero, T., Birkhölzer, Y.A. et al. Room-temperature epitaxy of α-CH3NH3PbI3 halide perovskite by pulsed laser deposition. Nat. Synth 4, 432–443 (2025). https://doi.org/10.1038/s44160-024-00717-z
Received:
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s44160-024-00717-z
This article is cited by
-
Oriented 2D Ruddlesden-Popper metal halides by pulsed laser deposition
npj 2D Materials and Applications (2025)


