Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Compressive-strained rutile TiO2 enables O2 mono-hydrogenation for singlet oxygen electrosynthesis

Abstract

Electrochemical O2 activation offers a green approach for efficient synthesis of singlet oxygen (1O2). However, it is commonly determined by adsorption-dependent O2 activation and transformation and can suffer from the sluggish desorption of surface-bound *OOH. Here we report an adsorption-independent O2 activation pathway for 1O2 electrosynthesis via an O2 mono-hydrogenation process on compressive-strained rutile TiO2 (CSR-TiO2). This CSR-TiO2 achieved an 1O2 generation rate of 148.26 μmol l−1 min−1 with near 100% Faradaic efficiency, outperforming the strain-free counterpart (35.97 μmol l−1 min−1) and other previously reported materials. Such superior performance of CSR-TiO2 stemmed from compressive strain, which can suppress the formation of reductive unsaturated sites for the O2 adsorption and enhance the reductive ability of atomic hydrogen (H*), favouring the O2 mono-hydrogenation pathway and bypassing the traditional surface-bound *OOH desorption pathway. The generated 1O2 could be utilized for the selective oxidation of thioanisole and its derivatives, offering a promising strategy for green organic synthesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Strategy for 1O2 electrosynthesis.
Fig. 2: Synthesis and characterization of CSR-TiO2.
Fig. 3: Compressive strain enhanced Ti–O interaction.
Fig. 4: 1O2 electrosynthesis performance.
Fig. 5: Mechanistic investigation.
Fig. 6: Selective sulfoxidation of thioanisole.

Similar content being viewed by others

Data availability

All data that support the findings of this study are present in the paper and the Supplementary Information. Source data are provided with this paper.

References

  1. Borden, W. T., Hoffmann, R., Stuyver, T. & Chen, B. Dioxygen: what makes this triplet diradical kinetically persistent? J. Am. Chem. Soc. 139, 9010–9018 (2017).

    Article  CAS  PubMed  Google Scholar 

  2. Ghogare, A. A. & Greer, A. Using singlet oxygen to synthesize natural products and drugs. Chem. Rev. 116, 9994–10034 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. Xie, L. et al. Pauling-type adsorption of O2 induced electrocatalytic singlet oxygen production on N–CuO for organic pollutants degradation. Nat. Commun. 13, 5560 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lucky, S. S., Soo, K. C. & Zhang, Y. Nanoparticles in photodynamic therapy. Chem. Rev. 115, 1990–2042 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Zhao, Y. et al. Janus electrocatalytic flow-through membrane enables highly selective singlet oxygen production. Nat. Commun. 11, 6228 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Feng, Z. et al. New insights into selective singlet oxygen production via the typical electroactivation of oxygen for water decontamination. Environ. Sci. Technol. 57, 17123–17131 (2023).

    Article  CAS  PubMed  Google Scholar 

  7. Holewinski, A., Idrobo, J.-C. & Linic, S. High-performance Ag–Co alloy catalysts for electrochemical oxygen reduction. Nat. Chem. 6, 828–834 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. Aurbach, D., McCloskey, B. D., Nazar, L. F. & Bruce, P. G. Advances in understanding mechanisms underpinning lithium–air batteries. Nat. Energy 1, 1–11 (2016).

    Article  Google Scholar 

  9. Kulkarni, A., Siahrostami, S., Patel, A. & Nørskov, J. K. Understanding catalytic activity trends in the oxygen reduction reaction. Chem. Rev. 118, 2302–2312 (2018).

    Article  CAS  PubMed  Google Scholar 

  10. Yang, X. et al. Tuning two-electron oxygen-reduction pathways for H2O2 electrosynthesis via engineering atomically dispersed single metal site catalysts. Adv. Mater. 34, 2107954 (2022).

    Article  CAS  Google Scholar 

  11. Shum, L. G. S. & Benson, S. W. Review of the heat of formation of the hydroperoxyl radical. J. Phys. Chem. 87, 3479–3482 (1983).

    Article  CAS  Google Scholar 

  12. Dixon-Lewis, G. & Williams, A. Role of hydroperoxyl in hydrogen–oxygen flames. Nature 196, 1309–1310 (1962).

    Article  CAS  Google Scholar 

  13. Foner, S. N. & Hudson, R. L. Mass spectrometry of the HO2 free radical. J. Chem. Phys. 36, 2681–2688 (1962).

    Article  CAS  Google Scholar 

  14. Dai, J. et al. Hydrogen spillover in complex oxide multifunctional sites improves acidic hydrogen evolution electrocatalysis. Nat. Commun. 13, 1189 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zheng, Q. et al. Cobalt single-atom reverse hydrogen spillover for efficient electrochemical water dissociation and dechlorination. Angew. Chem. Int. Ed. 63, e202401386 (2024).

    Article  CAS  Google Scholar 

  16. Linh, N. H., Nguyen, T. Q., Diño, W. A. & Kasai, H. Effect of oxygen vacancy on the adsorption of O2 on anatase TiO2(001): a DFT-based study. Surf. Sci. 633, 38–45 (2015).

    Article  Google Scholar 

  17. Macino, M. et al. Tuning of catalytic sites in Pt/TiO2 catalysts for the chemoselective hydrogenation of 3-nitrostyrene. Nat. Catal. 2, 873–881 (2019).

    Article  CAS  Google Scholar 

  18. Lazzeri, M. & Selloni, A. Stress-driven reconstruction of an oxide surface: the anatase TiO2(001)−(1 × 4) surface. Phys. Rev. Lett. 87, 266105 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Yamamoto, Y., Kasamatsu, S. & Sugino, O. Scaling relation of oxygen reduction reaction intermediates at defective TiO2 surfaces. J. Phys. Chem. C 123, 19486–19492 (2019).

    Article  CAS  Google Scholar 

  20. Mazza, T. et al. Raman spectroscopy characterization of TiO2 rutile nanocrystals. Phys. Rev. B 75, 045416 (2007).

    Article  Google Scholar 

  21. Valeeva, A. A., Rempel’, A. A. & Gusev, A. I. Ordering of cubic titanium monoxide into monoclinic Ti5O5. Inorg. Mater. 37, 603–612 (2001).

    Article  CAS  Google Scholar 

  22. Hÿtch, M. J., Snoeck, E. & Kilaas, R. Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy 74, 131–146 (1998).

    Article  Google Scholar 

  23. Wu, G. et al. In-plane strain engineering in ultrathin noble metal nanosheets boosts the intrinsic electrocatalytic hydrogen evolution activity. Nat. Commun. 13, 4200 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yi, X. & Zheng, A. Shine a light on the defect evolution over the TiO2 surface. Chem. Catal. 3, 100630 (2023).

    Article  CAS  Google Scholar 

  25. Dai, J. et al. Spin polarized Fe1−Ti pairs for highly efficient electroreduction nitrate to ammonia. Nat. Commun. 15, 88 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Caramori, S., Cristino, V., Argazzi, R., Meda, L. & Bignozzi, C. A. Photoelectrochemical behavior of sensitized TiO2 photoanodes in an aqueous environment: application to hydrogen production. Inorg. Chem. 49, 3320–3328 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Miao, Y., Zhao, Y., Zhang, S., Shi, R. & Zhang, T. Strain engineering: a boosting strategy for photocatalysis. Adv. Mater. 34, 2200868 (2022).

    Article  CAS  Google Scholar 

  28. Smith, J. W. & Saykally, R. J. Soft X-ray absorption spectroscopy of liquids and solutions. Chem. Rev. 117, 13909–13934 (2017).

    Article  CAS  PubMed  Google Scholar 

  29. Stöhr J. NEXAFS Spectroscopy (Springer, 2013).

  30. de Groot, F. M. F., Fuggle, J. C., Thole, B. T. & Sawatzky, G. A. L2,3 x-ray-absorption edges of d0 compounds: K+, Ca2+, Sc3+, and Ti4+ in Oh (octahedral) symmetry. Phys. Rev. B 41, 928–937 (1990).

    Article  Google Scholar 

  31. Haverkort, M. W. et al. Determination of the orbital moment and crystal-field splitting in LaTiO3. Phys. Rev. Lett. 94, 056401 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Chang, C. F. et al. C-axis dimer and its electronic breakup: the insulator-to-metal transition in Ti2O3. Phys. Rev. X 8, 021004 (2018).

    CAS  Google Scholar 

  33. Schlappa, J. et al. Resonant soft x-ray scattering from stepped surfaces of SrTiO3. J. Phys. Condens. Matter 24, 035501 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Dronskowski, R. & Bloechl, P. E. Crystal orbital Hamilton populations (COHP): energy-resolved visualization of chemical bonding in solids based on density-functional calculations. J. Phys. Chem. 97, 8617–8624 (1993).

    Article  CAS  Google Scholar 

  35. Deringer, V. L., Tchougréeff, A. L. & Dronskowski, R. Crystal orbital hamilton population (COHP) analysis as projected from plane-wave basis sets. J. Phys. Chem. A 115, 5461–5466 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Maintz, S., Deringer, V. L., Tchougréeff, A. L. & Dronskowski, R. Analytic projection from plane-wave and PAW wavefunctions and application to chemical-bonding analysis in solids. J. Comput. Chem. 34, 2557–2567 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Dickens, C. F., Montoya, J. H., Kulkarni, A. R., Bajdich, M. & Nørskov, J. K. An electronic structure descriptor for oxygen reactivity at metal and metal-oxide surfaces. Surf. Sci. 681, 122–129 (2019).

    Article  CAS  Google Scholar 

  38. Shun, K. et al. Revealing hydrogen spillover pathways in reducible metal oxides. Chem. Sci. 13, 8137–8147 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhu, Z. et al. Highly sensitive and fast-response hydrogen sensing of WO3 nanoparticles via palladium reined spillover effect. Nanoscale 13, 12669–12675 (2021).

    Article  CAS  PubMed  Google Scholar 

  40. Nørskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

    Article  PubMed  Google Scholar 

  41. Chen, L. et al. Accurate identification of radicals by in-situ electron paramagnetic resonance in ultraviolet-based homogenous advanced oxidation processes. Water Res. 221, 118747 (2022).

    Article  CAS  PubMed  Google Scholar 

  42. Xu, M., Wang, R., Fu, H., Shi, Y. & Ling, L. Harmonizing the cyano-group and Na to enhance selective photocatalytic O2 activation on carbon nitride for refractory pollutant degradation. Proc. Natl Acad. Sci. USA 121, e2318787121 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yang, J., Li, J., Ding, R., Liu, C. & Yin, X. Kinetic effects of temperature on Fe–N–C catalysts for 2e and 4e oxygen reduction reactions. J. Electrochem. Soc. 168, 096502 (2021).

    Article  CAS  Google Scholar 

  44. Wen, X., Miao, J., Mandler, D. & Long, M. Rotating ring-disk electrode method to evaluate performance of electrocatalysts in hydrogen peroxide activation via rapid detection of hydroxyl radicals. Chem. Eng. J. 454, 140312 (2023).

    Article  CAS  Google Scholar 

  45. Zhang, B. et al. A strongly coupled Ru–CrOx cluster–cluster heterostructure for efficient alkaline hydrogen electrocatalysis. Nat. Catal. 7, 441–451 (2024).

    Article  CAS  Google Scholar 

  46. Cao, S. et al. Construction of an OCP-ATR-FTIR spectroscopy device to in situ monitor the interfacial reaction of contaminants: competitive adsorption of Cr(VI) and oxalate on hematite. Environ. Sci. Technol. 57, 16532–16540 (2023).

    Article  CAS  PubMed  Google Scholar 

  47. Ji, K. et al. Electrocatalytic hydrogenation of 5-hydroxymethylfurfural promoted by a Ru1Cu single-atom alloy catalyst. Angew. Chem. Int. Ed. 61, e202209849 (2022).

    Article  CAS  Google Scholar 

  48. Chen, C. et al. Adjacent Fe site boosts electrocatalytic oxygen evolution at Co site in single-atom-catalyst through a dual-metal-site design. Energy Environ. Sci. 16, 1685–1696 (2023).

    Article  CAS  Google Scholar 

  49. Nakamura, R. & Nakato, Y. Primary intermediates of oxygen photoevolution reaction on TiO2 (rutile) particles, revealed by in situ FTIR absorption and photoluminescence measurements. J. Am. Chem. Soc. 126, 1290–1298 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Hammes-Schiffer, S. & Soudackov, A. V. Proton-coupled electron transfer in solution, proteins, and electrochemistry. J. Phys. Chem. B 112, 14108–14123 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Qian, S.-J. et al. Critical role of explicit lnclusion of solvent and electrode potential in the electrochemical description of nitrogen reduction. ACS Catal. 12, 11530–11540 (2022).

    Article  CAS  Google Scholar 

  52. Wang, H. et al. Enhanced singlet oxygen generation in oxidized graphitic carbon nitride for organic synthesis. Adv. Mater. 28, 6940–6945 (2016).

    Article  CAS  PubMed  Google Scholar 

  53. Li, J. et al. Highly selective oxidation of organic sulfides by a conjugated polymer as the photosensitizer for singlet oxygen generation. ACS Appl. Mater. Interfaces 12, 35475–35481 (2020).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (grant nos. 2021YFA1201701 to Y.Y. and 2022YFA1205601 to Y.Y.), the National Natural Science Foundation of China (grant nos. U22A20402 to L.Z.Z., 22102100 to Y.Y., 22206121 to J.D., 22306119 to Y.S. and 22476126 to Y.Y.), Shenzhen Science and Technology Program (grant no. JCYJ20220818095601002 to L.Z.Z.) and the Natural Science Foundation of Shanghai (grant no. 22ZR1431700 to Y.Y.). The authors acknowledge the support from the Max Planck−POSTECH−Hsinchu Center for Complex Phase Materials, the Instrumental Analysis Center of Shanghai Jiao Tong University, Instrumental Analysis Center of School of Environmental Science and Engineering, State Key Laboratory for Pollution Control and Resource Reuse, and Shiyanjia Lab for the help in characterizations and experimental measurements. The computations in this paper were run on the π 2.0 cluster supported by the Center for High Performance Computing at Shanghai Jiao Tong University.

Author information

Authors and Affiliations

Authors

Contributions

Y.Y. and L.Z.Z. conceived the idea. R.W. and J.D. carried out the sample synthesis, characterization and electrocatalytic measurements. R.W. performed the theoretical calculations. R.W., J.D., Y.Y. and L.Z.Z. wrote the paper. Z.H., C.C. and C.K. carried out the sXAS measurements. L.Z., Y.Z. and M.X. conducted TEM characterizations. G.Z. helped with the density functional theory (DFT) calculation. Y.S., J.W. and X.Z. offered help on the operando electrochemical ATR-IR. B.Z. and K.W. performed the EPR measurement. R.Z., Y.Z. and Y.S. took part in the operando Raman spectroscopy. All the authors discussed results and provided comments during the manuscript preparation.

Corresponding authors

Correspondence to Yancai Yao or Lizhi Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks W.-F. Lin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. The Primary Handling Editor: is Alexandra Groves, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Experimental details and Supplementary Figs. 1–63, Tables 1–3 and Notes 1–4.

Source data

Source Data Fig. 2

Source data for Fig. 2b,c,f,g–i.

Source Data Fig. 3

Source data for Fig. 3a,b,d,e.

Source Data Fig. 4

Source data for Fig. 4a–i.

Source Data Fig. 5

Source data for Fig. 5a–f,h.

Source Data Fig. 6

Source data for Fig. 6a,c.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Dai, J., Zhao, L. et al. Compressive-strained rutile TiO2 enables O2 mono-hydrogenation for singlet oxygen electrosynthesis. Nat. Synth 4, 754–764 (2025). https://doi.org/10.1038/s44160-025-00756-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44160-025-00756-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing