Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ampere-level electrosynthesis of a nylon-6 precursor by local NO coverage tuning

Abstract

Cyclohexanone oxime (CHO) electrosynthesis from NO and cyclohexanone with high Faradaic efficiency at ampere-level current density is desirable but challenging. Here theoretical calculations reveal that NO coverage on silver catalysts plays a critical role in CHO electrosynthesis. We then experimentally adjust the NO coverage by tuning the bulk NO concentration and reaction rate. We find that low NO coverage benefits NH3 formation, whereas high coverage delivers CHO and N2. Mechanistic studies indicate that with increasing NO coverage, active sites transfer from bridge step to hollow terrace sites at which NH2OH* can stably exist, rather than its decomposition into NH3. However, N‒N coupling also readily occurs at high NO coverage. This understanding inspires us to develop a doping strategy to inhibit NO–NO coupling at high NO coverage. A ruthenium-doped silver catalyst is therefore developed, realizing 86% CHO Faradaic efficiency at 1.0 A cm−2, far exceeding previously reported performance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Reaction process diagram and catalyst screening for CHO electrosynthesis.
Fig. 2: DFT calculation results for the effects of NO coverage.
Fig. 3: CHO electrosynthesis performance as a function of NO coverage.
Fig. 4: Investigation of the reaction mechanism under low and high NO coverages.
Fig. 5: Calculated and experimental results of AgRu for CHO electrosynthesis.
Fig. 6: Synthesis and characterization of [15N]pralidoxime.

Similar content being viewed by others

Data availability

The DFT-optimized atomic coordinates are available via Zenodo at https://zenodo.org/records/15590189 (ref. 45). The data that support the findings of this study are available in the paper and its Supplementary Information. Source data are provided with this paper.

References

  1. Global nylon 6 production capacity reach to 8.86 million tons in 2024. HDIN Research www.hdinresearch.com/news/56 (2019).

  2. Thomas, J. M. & Raja, R. Design of a ‘green’ one-step catalytic production of ε-caprolactam (precursor of nylon-6). Proc. Natl Acad. Sci. USA 102, 13732–13736 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Yuan, Y. et al. Electrocatalytic ORR–coupled ammoximation for efficient oxime synthesis. Sci. Adv. 10, eado1755 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lewis, R. J. et al. Highly efficient catalytic production of oximes from ketones using in situ–generated H2O2. Science 376, 615–620 (2022).

    Article  CAS  PubMed  Google Scholar 

  5. Benson, R. E., Cairns, T. L. & Whitman, G. M. Synthesis of hydroxylamine. J. Am. Chem. Soc. 78, 4202–4205 (1956).

    Article  CAS  Google Scholar 

  6. Mokaya, R. & Poliakoff, M. A cleaner way to nylon? Nature 437, 1243–1244 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Kong, X. et al. Synthesis of hydroxylamine from air and water via a plasma-electrochemical cascade pathway. Nat. Sustain. 7, 652–660 (2024).

    Article  Google Scholar 

  8. Jia, S. et al. Synthesis of hydroxylamine via ketone-mediated nitrate electroreduction. J. Am. Chem. Soc. 146, 10934–10942 (2024).

    Article  CAS  PubMed  Google Scholar 

  9. Li, J., Zhang, Y., Kuruvinashetti, K. & Kornienko, N. Construction of C–N bonds from small-molecule precursors through heterogeneous electrocatalysis. Nat. Rev. Chem. 6, 303–319 (2022).

    Article  CAS  PubMed  Google Scholar 

  10. Li, J. et al. Heterogeneous electrosynthesis of C–N, C–S and C–P products using CO2 as a building block. Nat. Synth. 3, 809–824 (2024).

    Article  CAS  Google Scholar 

  11. Liu, C., Gao, Y. & Zhang, B. Organonitrogen electrosynthesis from CO2 and nitrogenous sources in water. Nat. Synth. 3, 794–796 (2024).

    Article  CAS  Google Scholar 

  12. Jouny, M. et al. Formation of carbon–nitrogen bonds in carbon monoxide electrolysis. Nat. Chem. 11, 846–851 (2019).

    Article  CAS  PubMed  Google Scholar 

  13. Tao, Z., Rooney, C. L., Liang, Y. & Wang, H. Accessing organonitrogen compounds via C–N coupling in electrocatalytic CO2 reduction. J. Am. Chem. Soc. 143, 19630–19642 (2021).

    Article  CAS  PubMed  Google Scholar 

  14. Jiao, Y., Li, H., Jiao, Y. & Qiao, S.-Z. Activity and selectivity roadmap for C–N electrocoupling on mxenes. J. Am. Chem. Soc. 145, 15572–15580 (2023).

    Article  CAS  PubMed  Google Scholar 

  15. Wu, Y., Jiang, Z., Lin, Z., Liang, Y. & Wang, H. Direct electrosynthesis of methylamine from carbon dioxide and nitrate. Nat. Sustain. 4, 725–730 (2021).

    Article  Google Scholar 

  16. Liu, X., Jiao, Y., Zheng, Y., Jaroniec, M. & Qiao, S.-Z. Mechanism of C–N bonds formation in electrocatalytic urea production revealed by ab initio molecular dynamics simulation. Nat. Commun. 13, 5471 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang, X. et al. Direct electrosynthesis of valuable C=N compound from NO. Chem. Catal. 2, 1807–1818 (2022).

    CAS  Google Scholar 

  18. Wu, Y. et al. Electrosynthesis of a nylon-6 precursor from cyclohexanone and nitrite under ambient conditions. Nat. Commun. 14, 3057 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen, F.-Y. et al. Efficient conversion of low-concentration nitrate sources into ammonia on a Ru-dispersed Cu nanowire electrocatalyst. Nat. Nanotechnol. 17, 759–767 (2022).

    Article  CAS  PubMed  Google Scholar 

  20. Han, S. et al. Ultralow overpotential nitrate reduction to ammonia via a three-step relay mechanism. Nat. Catal. 6, 402–414 (2023).

    Article  CAS  Google Scholar 

  21. Shao, J. et al. Electrochemical synthesis of ammonia from nitric oxide using a copper–tin alloy catalyst. Nat. Energy 8, 1273–1283 (2023).

    Article  CAS  Google Scholar 

  22. Jia, S. et al. Integration of plasma and electrocatalysis to synthesize cyclohexanone oxime under ambient conditions using air as a nitrogen source. Chem. Sci. 14, 13198–13204 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liao, P., Kang, J., Xiang, R., Wang, S. & Li, G. Electrocatalytic systems for NOx valorization in organonitrogen synthesis. Angew. Chem. Int. Ed. 63, e202311752 (2024).

    Article  CAS  Google Scholar 

  24. Wu, Y. et al. Electrocatalytic synthesis of nylon-6 precursor at almost 100 % yield. Angew. Chem. Int. Ed. 62, e202305491 (2023).

    Article  CAS  Google Scholar 

  25. Sharp, J. et al. Sustainable electrosynthesis of cyclohexanone oxime through nitrate reduction on a Zn–Cu alloy catalyst. ACS Catal. 14, 3287–3297 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Luo, L. et al. Electrosynthesis of the nylon-6 precursor from nitrate and cyclohexanone over a rutile TiO2 catalyst. CCS Chem. 7, 266–278 (2025).

    Article  CAS  Google Scholar 

  27. Ko, B. H., Hasa, B., Shin, H., Zhao, Y. & Jiao, F. Electrochemical reduction of gaseous nitrogen oxides on transition metals at ambient conditions. J. Am. Chem. Soc. 144, 1258–1266 (2022).

    Article  CAS  PubMed  Google Scholar 

  28. Yang, R. et al. Descriptor-based volcano relations predict single atoms for hydroxylamine electrosynthesis. Angew. Chem. Int. Ed. 63, e202317167 (2024).

    Article  CAS  Google Scholar 

  29. Guo, P. et al. Computational insights on structural sensitivity of cobalt in NO electroreduction to ammonia and hydroxylamine. J. Am. Chem. Soc. 146, 13974–13982 (2024).

    Article  CAS  PubMed  Google Scholar 

  30. Wang, Z., Cao, X. M., Zhu, J. & Hu, P. Activity and coke formation of nickel and nickel carbide in dry reforming: a deactivation scheme from density functional theory. J. Catal. 311, 469–480 (2014).

    Article  CAS  Google Scholar 

  31. Li, J. et al. Constraining CO coverage on copper promotes high-efficiency ethylene electroproduction. Nat. Catal. 2, 1124–1131 (2019).

    Article  CAS  Google Scholar 

  32. Hammer, B. & Nørskov, J. K. Adsorbate reorganization at steps: NO on Pd(211). Phys. Rev. Lett. 79, 4441–4444 (1997).

    Article  CAS  Google Scholar 

  33. Beltramo, G. L. & Koper, M. T. M. Nitric oxide reduction and oxidation on stepped Pt [n(111) × (111)] electrodes. Langmuir 19, 8907–8915 (2003).

    Article  CAS  Google Scholar 

  34. Li, T. et al. A spectroscopic study on nitrogen electrooxidation to nitrate. Angew. Chem. Int. Ed. 62, e202217411 (2023).

    Article  CAS  Google Scholar 

  35. Guo, C. et al. Computational design of spinel oxides through coverage-dependent screening on the reaction phase diagram. ACS Catal. 12, 6781–6793 (2022).

    Article  CAS  Google Scholar 

  36. Li, J. et al. Cascade dual sites modulate local CO coverage and hydrogen-binding strength to boost CO2 electroreduction to ethylene. J. Am. Chem. Soc. 146, 5693–5701 (2024).

    Article  CAS  PubMed  Google Scholar 

  37. Gao, D., Arán-Ais, R. M., Jeon, H. S. & Cuenya, B. R. Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products. Nat. Catal. 2, 198–210 (2019).

    Article  CAS  Google Scholar 

  38. Karatok, M. Achieving ultrahigh selectivity to hydrogen production from formic acid on Pd–Ag alloys. J. Am. Chem. Soc. 145, 5114–5124 (2023).

    Article  CAS  PubMed  Google Scholar 

  39. Shi, J. et al. Promoting nitric oxide electroreduction to ammonia over electron-rich cu modulated by Ru doping. Sci. China Chem. 64, 1493–1497 (2021).

    Article  CAS  Google Scholar 

  40. Xiang, R. et al. Electrocatalytic synthesis of pyridine oximes using in situ generated NH2OH from NO species on nanofiber membranes derived from NH2-MIL-53 (Al). Angew. Chem. Int. Ed. 62, e202312239 (2023).

    Article  CAS  Google Scholar 

  41. Zhao, R. et al. Achieving over 90% Faradaic efficiency in cyclohexanone oxime electrosynthesis using the Cu–Mo dual-site catalyst. J. Am. Chem. Soc. 146, 27956–27963 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang, F. et al. A Pickering-emulsion-droplet-integrated electrode for the continuous-flow electrosynthesis of oximes. Nat. Synth 4, 479–487 (2025).

    Article  CAS  Google Scholar 

  43. Li, M. et al. Electrosynthesis of amino acids from NO and α-keto acids using two decoupled flow reactors. Nat. Catal. 6, 906–915 (2023).

    Article  Google Scholar 

  44. Zhao, J. et al. NiFe nanoalloys derived from layered double hydroxides for photothermal synergistic reforming of CH4 with CO2. Adv. Funct. Mater. 32, 2204056 (2022).

    Article  CAS  Google Scholar 

  45. Wu, Y. et al. [Dataset] Ampere-level electrosynthesis of a nylon-6 precursor by local NO coverage tuning. Zenodo https://zenodo.org/records/15590189 (2025).

Download references

Acknowledgements

We acknowledge the National Natural Science Foundation of China (22401212 to Y.W., 22271213 to B.Z. and 224B2306 to R.Y.).

Author information

Authors and Affiliations

Authors

Contributions

B.Z. conceived the idea and directed the project. Y.W. and B.Z. designed the experiments. X.L. and Y.W. carried out the experiments. R.Y. and C.C. performed the DFT calculations. Z.S. assisted with some experiments. X.L., Y.W. and B.Z. analysed the data. Y.W. wrote the paper. B.Z. revised the paper. All the authors discussed the results and commented on the paper.

Corresponding author

Correspondence to Bin Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Jeong Woo Han and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Alexandra Groves, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–55, Notes 1–19, Tables 1–8 and References 1–18.

Supplementary Data 1

Calculational models for Ag and AgRu.

Source data

Source Data Fig. 1

The source data underlying Fig. 1.

Source Data Fig. 2

The source data underlying Fig. 2.

Source Data Fig. 3

The source data underlying Fig. 3.

Source Data Fig. 4

The source data underlying Fig. 4.

Source Data Fig. 5

The source data underlying Fig. 5.

Source Data Fig. 6

The source data underlying Fig. 6.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Liu, X., Yang, R. et al. Ampere-level electrosynthesis of a nylon-6 precursor by local NO coverage tuning. Nat. Synth 4, 1504–1512 (2025). https://doi.org/10.1038/s44160-025-00851-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44160-025-00851-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing