Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Sustainable oxime production via the electrosynthesis of hydroxylamine in a free state

Abstract

Hydroxylamine (NH2OH) is an important feedstock for oxime production. Coreduction of NOx and aldehydes or ketones enables sustainable one-step oximation by utilizing in situ *NH2OH intermediates but suffers from side reactions and reduced current density due to the presence of multiple reactants in one reactor. Here we decouple oximation into two steps, the electrochemical synthesis of free NH2OH via nitrite (NO2) electroreduction and the aldehyde or ketone oximation chemical step, circumventing the negative effects (such as site blocking, aldehyde or ketone electroreduction, or crossover) encountered in one-step oximation. By using a Ketjen-black-supported iron phthalocyanine as the catalyst, we achieve an exceptionally high partial current density of free NH2OH (jNH2OH) of 262.9 mA cm−2 (corresponding to productivity of 2.452 mmol cm−2 h−1) in neutral conditions at an industrially relevant current density of 500 mA cm−2. By coupling NH2OH electrosynthesis with subsequent oximation in two steps, nearly stoichiometric oximes are produced with high efficiency and broad applicability. This work paves the way toward a sustainable oxime industry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Comparison of different oxime electrosynthesis routes.
Fig. 2: Free NH2OH production over a FePc-KB catalyst.
Fig. 3: Comparison between one-step and two-step oximation.
Fig. 4: Understanding selective production of free NH2OH over FePc-KB.
Fig. 5: MEA performance for oxime electrosynthesis at industrially relevant current densities.
Fig. 6: TEA and CO2 emission LCA.

Similar content being viewed by others

Data availability

The data supporting the finding of the study are available in the main text or Supplementary Information. Source data are provided with this paper, and at Zenodo via https://zenodo.org/records/16354033 (ref. 58).

References

  1. Bolotin, D. S., Bokach, N. A., Demakova, M. Y. & Kukushkin, V. Y. Metal-involving synthesis and reactions of oximes. Chem. Rev. 117, 13039–13122 (2017).

    Article  CAS  PubMed  Google Scholar 

  2. Wu, Y. et al. Electrosynthesis of a nylon-6 precursor from cyclohexanone and nitrite under ambient conditions. Nat. Commun. 14, 3057 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhang, X. et al. Direct electro-synthesis of valuable C=N compound from NO. Chem Catal. 2, 1807–1818 (2022).

    CAS  Google Scholar 

  4. Kong, X. et al. Synthesis of hydroxylamine from air and water via a plasma-electrochemical cascade pathway. Nat. Sustain. 7, 652–660 (2024).

    Article  Google Scholar 

  5. Lewis, R. J. et al. Highly efficient catalytic production of oximes from ketones using in situ-generated H2O2. Science 376, 615–620 (2022).

    Article  CAS  PubMed  Google Scholar 

  6. Wu, J. et al. Integrated tandem electrochemical–chemical–electrochemical coupling of biomass and nitrate to sustainable alanine. Angew. Chem. Int. Ed. 62, e202311196 (2023).

    Article  CAS  Google Scholar 

  7. Xian, J. et al. Electrocatalytic synthesis of essential amino acids from nitric oxide using atomically dispersed Fe on N-doped carbon. Angew. Chem. Int. Ed. 62, e202304007 (2023).

    Article  CAS  Google Scholar 

  8. Li, J. et al. Rechargeable biomass battery for electricity storage/generation and concurrent valuable chemicals production. Angew. Chem. Int. Ed. 62, e202304852 (2023).

    Article  Google Scholar 

  9. Wu, Y. et al. Electrocatalytic synthesis of nylon-6 precursor at almost 100% yield. Angew. Chem. Int. Ed. 62, e202305491 (2023).

    Article  CAS  Google Scholar 

  10. Lan, X. E. et al. Electrosynthesis of hydroxylamine from nitrate reduction in water. Sci. China Chem. 66, 1758–1762 (2023).

    Article  CAS  Google Scholar 

  11. Chen, W. et al. Catalyst selection over an electrochemical reductive coupling reaction toward direct electrosynthesis of oxime from NOx and aldehyde. J. Am. Chem. Soc. 146, 6294–6306 (2024).

    Article  CAS  PubMed  Google Scholar 

  12. Sharp, J. et al. Sustainable electrosynthesis of cyclohexanone oxime through nitrate reduction on a Zn–Cu alloy catalyst. ACS Catal. 14, 3287–3297 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sheng, Y. et al. Modulating hydrogen adsorption by unconventional pd orbital hybridization over porous high-entropy alloy metallene for efficient electrosynthesis of nylon-6 precursor. Angew. Chem. Int. Ed. 63, e202410442 (2024).

    Article  CAS  Google Scholar 

  14. Zhao, R. et al. Achieving over 90% Faradaic efficiency in cyclohexanone oxime electrosynthesis using the Cu–Mo dual-site catalyst. J. Am. Chem. Soc. 146, 27956–27963 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tang, Y. et al. Selective electrosynthesis of hydroxylamine from aqueous nitrate/nitrite by suppressing further reduction. Nat. Commun. 15, 9800 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Xiang, R. et al. Electrocatalytic synthesis of pyridine oximes using in situ generated NH2OH from NO species on nanofiber membranes derived from NH2-MIL-53(Al). Angew. Chem. Int. Ed. 62, e202312239 (2023).

    Article  CAS  Google Scholar 

  17. Dai, C. et al. Suppressing product crossover and C–C bond cleavage in a glycerol membrane electrode assembly reformer. Energy Environ. Sci. 17, 6350–6359 (2024).

    Article  CAS  Google Scholar 

  18. Blanco, D. E., Prasad, P. A., Dunningan, K. & Modestino, M. A. Insights into membrane-separated organic electrosynthesis: the case of adiponitrile electrochemical production. React. Chem. Eng. 5, 136–144 (2020).

    Article  CAS  Google Scholar 

  19. Li, M. et al. Electrosynthesis of amino acids from NO and α-keto acids using two decoupled flow reactors. Nat. Catal. 6, 906–915 (2023).

    Article  Google Scholar 

  20. Han, S. et al. Ultralow overpotential nitrate reduction to ammonia via a three-step relay mechanism. Nat. Catal. 6, 402–414 (2023).

    Article  CAS  Google Scholar 

  21. Wu, Z. Y. et al. Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst. Nat. Commun. 12, 2870 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Xu, Z. et al. Continuous ammonia electrosynthesis using physically interlocked bipolar membrane at 1000 mA cm−2. Nat. Commun. 14, 1619 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liang, J. et al. Amorphous boron carbide on titanium dioxide nanobelt arrays for high-efficiency electrocatalytic NO reduction to NH3. Angew. Chem. Int. Ed. 61, e202202087 (2022).

    Article  CAS  Google Scholar 

  24. Fan, K. et al. Active hydrogen boosts electrochemical nitrate reduction to ammonia. Nat. Commun. 13, 7958 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fang, J. Y. et al. Ampere-level current density ammonia electrochemical synthesis using CuCo nanosheets simulating nitrite reductase bifunctional nature. Nat. Commun. 13, 7899 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. He, W. et al. Splicing the active phases of copper/cobalt-based catalysts achieves high-rate tandem electroreduction of nitrate to ammonia. Nat. Commun. 13, 1129 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen, G.-F. et al. Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper–molecular solid catalyst. Nat. Energy 5, 605–613 (2020).

    Article  CAS  Google Scholar 

  28. Li, P., Jin, Z., Fang, Z. & Yu, G. A single-site iron catalyst with preoccupied active centers that achieves selective ammonia electrosynthesis from nitrate. Energy Environ. Sci. 14, 3522–3531 (2021).

    Article  CAS  Google Scholar 

  29. Ko, B. H., Hasa, B., Shin, H., Zhao, Y. & Jiao, F. Electrochemical reduction of gaseous nitrogen oxides on transition metals at ambient conditions. J. Am. Chem. Soc. 144, 1258–1266 (2022).

    Article  CAS  PubMed  Google Scholar 

  30. de Groot, M. T., Merkx, M., Wonders, A. H. & Koper, M. T. M. Electrochemical reduction of NO by hemin adsorbed at pyrolitic graphite. J. Am. Chem. Soc. 127, 7579–7586 (2005).

    Article  PubMed  Google Scholar 

  31. Sheng, X. et al. Carbon-supported iron complexes as electrocatalysts for the cogeneration of hydroxylamine and electricity in a NO–H2 fuel cell: a combined electrochemical and density functional theory study. J. Power Sources 390, 249–260 (2018).

    Article  CAS  Google Scholar 

  32. Otsuka, K., Sawada, H. & Yamanaka, I. A hydrogen nitric oxide cell for the synthesis of hydroxylamine. J. Electrochem. Soc. 143, 3491–3497 (1996).

    Article  CAS  Google Scholar 

  33. Kim, D. H. et al. Selective electrochemical reduction of nitric oxide to hydroxylamine by atomically dispersed iron catalyst. Nat. Commun. 12, 1856 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhao, S. et al. Selective nitric oxide electroreduction at monodispersed transition-metal sites with atomically precise coordination environment. Chem. Catal. 3, 100598 (2023).

    CAS  Google Scholar 

  35. Zhou, J. et al. Linear adsorption enables NO selective electroreduction to hydroxylamine on single Co sites. Angew. Chem. Int. Ed. 62, e202305184 (2023).

    Article  CAS  Google Scholar 

  36. Long, L. A. The explosion at Concept Sciences: hazards of hydroxylamine. Process Saf. Prog. 23, 114–120 (2004).

    Article  CAS  Google Scholar 

  37. Pio, G., Mocellin, P., Vianello, C. & Salzano, E. A detailed kinetic model for the thermal decomposition of hydroxylamine. J. Hazard. Mater. 416, 125641 (2021).

    Article  CAS  PubMed  Google Scholar 

  38. Xu, M.-Y. et al. Electrosynthesis of organonitrogen compounds via hydroxylamine-mediated cascade reactions. Angew. Chem. Int. Ed. 64, e202422637 (2025).

    Article  CAS  Google Scholar 

  39. Zhou, H. et al. Scalable electrosynthesis of commodity chemicals from biomass by suppressing non-Faradaic transformations. Nat. Commun. 14, 5621 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li, J. & Duan, H. Recent progress in energy-saving hydrogen production by coupling with value-added anodic reactions. Chem 10, 3008–3039 (2024).

    Article  CAS  Google Scholar 

  41. Jia, S. et al. Synthesis of hydroxylamine via ketone-mediated nitrate electroreduction. J. Am. Chem. Soc. 146, 10934–10942 (2024).

    Article  CAS  PubMed  Google Scholar 

  42. Frear, D. S. & Burrell, R. C. Spectrophotometric method for determining hydroxylamine reductase activity in higher plants. Anal. Chem. 27, 1664–1665 (1955).

    Article  CAS  Google Scholar 

  43. Zeng, Y. et al. Unraveling the electronic structure and dynamics of the atomically dispersed iron sites in electrochemical CO2 reduction. J. Am. Chem. Soc. 145, 15600–15610 (2023).

    Article  CAS  PubMed  Google Scholar 

  44. Ren, X. et al. In-situ spectroscopic probe of the intrinsic structure feature of single-atom center in electrochemical CO/CO2 reduction to methanol. Nat. Commun. 14, 3401 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Alsudairi, A. et al. Resolving the iron phthalocyanine redox transitions for ORR catalysis in aqueous media. J. Phys. Chem. Lett. 8, 2881–2886 (2017).

    Article  CAS  PubMed  Google Scholar 

  46. Melendres, C., Rios, C., Feng, X. & McMasters, R. In situ laser Raman spectra of iron phthalocyanine adsorbed on copper and gold electrodes. J. Phys. Chem. 87, 3526–3531 (1983).

    Article  CAS  Google Scholar 

  47. Speelman, A. L. et al. Non-heme high-spin {FeNO}6–8 complexes: one ligand platform can do it all. J. Am. Chem. Soc. 140, 11341–11359 (2018).

    Article  CAS  PubMed  Google Scholar 

  48. Ding, Y., Cai, P. & Wen, Z. Electrochemical neutralization energy: from concept to devices. Chem. Soc. Rev. 50, 1495–1511 (2021).

    Article  CAS  PubMed  Google Scholar 

  49. Fan, L. et al. High entropy alloy electrocatalytic electrode toward alkaline glycerol valorization coupling with acidic hydrogen production. J. Am. Chem. Soc. 144, 7224–7235 (2022).

    Article  CAS  PubMed  Google Scholar 

  50. Jia, S. et al. Integration of plasma and electrocatalysis to synthesize cyclohexanone oxime under ambient conditions using air as a nitrogen source. Chem. Sci. 14, 13198–13204 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Luo, L. et al. Electrosynthesis of the nylon-6 precursor from nitrate and cyclohexanone over a rutile TiO2 catalyst. CCS Chem. 7, 266–278 (2025).

    Article  CAS  Google Scholar 

  52. Zhang, F. et al. A Pickering-emulsion-droplet-integrated electrode for the continuous-flow electrosynthesis of oximes. Nat. Synth. 4, 479–487 (2025).

    Article  CAS  Google Scholar 

  53. Wu, Y., Jiang, Z., Lu, X., Liang, Y. & Wang, H. Domino electroreduction of CO2 to methanol on a molecular catalyst. Nature 575, 639–642 (2019).

    Article  CAS  PubMed  Google Scholar 

  54. Lee, B.-H. et al. Supramolecular tuning of supported metal phthalocyanine catalysts for hydrogen peroxide electrosynthesis. Nat. Catal. 6, 234–243 (2023).

    Article  CAS  Google Scholar 

  55. Li, Y. H. et al. Redox-mediated electrosynthesis of ethylene oxide from CO2 and water. Nat. Catal. 5, 185–192 (2022).

    Article  Google Scholar 

  56. Luo, Y. T. et al. Selective electrochemical synthesis of urea from nitrate and CO via relay catalysis on hybrid catalysts. Nat. Catal. 6, 939–948 (2023).

    Article  CAS  Google Scholar 

  57. Yu, L. et al. Ultrafast room-temperature synthesis of porous S-doped Ni/Fe (oxy)hydroxide electrodes for oxygen evolution catalysis in seawater splitting. Energy Environ. Sci. 13, 3439–3446 (2020).

    Article  CAS  Google Scholar 

  58. Li, J. Sustainable oxime production via the electrosynthesis of hydroxylamine in a free state. Zenodo https://doi.org/10.5281/zenodo.16354033 (2025).

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2023YFA1507400), the National Natural Science Foundation of China (grant numbers 22325805 and 22402107), the Beijing Natural Science Foundation (JQ22003), the Haihe Laboratory of Sustainable Chemical Transformations (24HHWCSS00007), and Tsinghua University Dushi Program and Center of High Performance Computing, Tsinghua University. J.L. was supported by the Postdoctoral Fellowship Program of CPSF (GZB20240475) and the Fundamental Research Funds for the Central Universities. The authors thank X. Gao, K. Kong, Q. Shi and K. Ji for useful discussions.

Author information

Authors and Affiliations

Contributions

J.L. and X.L. designed and carried out the synthesis, characterizations and catalytic reactions, analysed the data and wrote the paper. S.-M.X. performed DFT. M.X. and L.Z. performed XAS and analysis. Yunlong Wang and Y.P. performed flue gas analysis. Y.L. and X.W. carried out the LCA. A.-Z.L. and Ye Wang helped with in situ Fourier-transform infrared spectroscopy. X.L. performed Mӧssbauer spectroscopy. T.Z. assisted with catalyst synthesis. H.Z. provided help with electrolyser assembly. H.D. supervised the project, conceived the idea, helped design the experiments, analysed the data and wrote the paper. All the authors commented on the paper and have approved the final version.

Corresponding authors

Correspondence to Si-Min Xu or Haohong Duan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Feng Jiao, Hyungjun Kim, Tengfei Li and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Alexandra Groves, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–19, Figs. 1–68, Tables 1–8 and References.

Source data

Source Data Fig. 2

Free NH2OH production over a FePc-KB catalyst.

Source Data Fig. 3

Comparison between one-step oximation and two-step oximation.

Source Data Fig. 4

Understanding of selective production of free NH2OH over FePc-KB.

Source Data Fig. 5

MEA performance for oxime electrosynthesis at industrially relevant current density.

Source Data Fig. 6

Technoeconomic analysis and CO2 emission life-cycle assessment.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Liu, X., Xu, SM. et al. Sustainable oxime production via the electrosynthesis of hydroxylamine in a free state. Nat. Synth 4, 1598–1609 (2025). https://doi.org/10.1038/s44160-025-00879-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44160-025-00879-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing