Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Regiocontrollable [2 + 2] benzannulation of γ,δ-C(sp3)–H bonds with dihaloarenes using palladium catalysis

Abstract

Methylene-selective C–H functionalization at distal positions is a challenge in the field of Pd(II) catalysis. We have previously reported a ligand-enabled β,γ-C–H coupling with dihaloarenes for the synthesis of benzocyclobutenes (BCBs) as a promising class of scaffolds in drug discovery. Here we report a Pd(II)-catalysed method for the γ,δ-methylene C–H activation of free aliphatic acids and subsequent coupling with dihaloarenes, which offers an efficient route for the synthesis of diversely functionalized BCBs. The development of a carboxyl-pyridone ligand is crucial for the remote C(sp3)–H activation. Notably, previous γ,δ-methylene C–H activation reactions of monoaliphatic acids are limited to carbocyclic substrates. The site-selective activation of γ,δ-C–H bonds installs the BCB pharmacophores that are one carbon atom further away from the carboxyl group than in previous studies. Given the carboxyl group can serve as hydrogen-bond donor or acceptor, such alternation of distance between two interactions can impact bioactivity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Ligand-enabled [2 + 2] benzannulation of free aliphatic carboxylic acids.
Fig. 2: Investigation of ligands for the [2 + 2] benzannulation reaction of γ,δ-C–H bonds with dihaloarenes.
Fig. 3: Aliphatic acid scope for the [2 + 2] benzannulation reaction of γ,δ-C–H bonds with dihaloarenes.
Fig. 4: Dihaloarene scope for the [2 + 2] benzannulation reaction of γ,δ-C–H bonds with dihaloarenes.
Fig. 5: Synthetic applications.
Fig. 6: Mechanistic studies.
Fig. 7: Proposed mechanism.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the Article and its Supplementary Information. The crystallographic data for the structure reported in this study for compounds 4o have been deposited at the Cambridge Crystallographic Data Centre (CCDC), under accession number 2357735. These data can be obtained free of charge from the CCDC via www.ccdc.cam.ac.uk/data_request/cif.

References

  1. Korth, H. G. & Sustman, R. in Carboxylic Acids and Carboxylic Acid Derivatives 4th edn (ed. Falbe, J.) 193–469 (Thieme, 1985).

  2. Lyons, T. W. & Sanford, M. S. Palladium-catalyzed ligand-directed C–H functionalization reactions. Chem. Rev. 110, 1147–1169 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ackermann, L. Carboxylate-assisted transition-metal-catalyzed C–H bond functionalizations: mechanism and scope. Chem. Rev. 111, 1315–1345 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Daugulis, O., Roane, J. & Tran, L. D. Bidentate, monoanionic auxiliary-directed functionalization of carbon–hydrogen bonds. Acc. Chem. Res. 48, 1053–1064 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Giri, R. et al. Palladium-catalyzed methylation and arylation of sp2 and sp3 C−H bonds in simple carboxylic acids. J. Am. Chem. Soc. 129, 3510–3511 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Zhu, Y. et al. Pd-catalysed ligand-enabled carboxylate-directed highly regioselective arylation of aliphatic acids. Nat. Commun. 8, 14904 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Uttry, A., Mal, S. & van Gemmeren, M. Late-stage β-C(sp3)–H deuteration of carboxylic acids. J. Am. Chem. Soc. 143, 10895–10901 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. Hu, L., Meng, G. & Yu, J.-Q. Ligand-enabled Pd(II)-catalyzed β-methylene C(sp3)–H arylation of free aliphatic acids. J. Am. Chem. Soc. 144, 20550–20553 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yan, J.-L., Hu, L., Lu, Y. & Yu, J.-Q. Catalyst-controlled chemoselective γ‑C(sp3)–H lactonization of carboxylic acid: methyl versus methylene. J. Am. Chem. Soc. 146, 29311–29314 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Engle, K. M., Mei, T.-S., Wasa, M. & Yu, J.-Q. Weak coordination as a powerful means for developing broadly useful C–H functionalization reactions. Acc. Chem. Res. 45, 788–802 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Dolui, P., Das, J., Chandrashekar, H. B., Anjana, S. S. & Maiti, D. Ligand-enabled PdII-catalyzed iterative γ-C(sp3)–H arylation of free aliphatic acid. Angew. Chem. Int. Ed. 58, 13773–13777 (2019).

    Article  CAS  Google Scholar 

  12. Park, H. S., Fan, Z., Zhu, R.-Y. & Yu, J.-Q. Distal γ-C(sp3)–H olefination of ketone derivatives and free carboxylic acids. Angew. Chem. Int. Ed. 59, 12853–12859 (2020).

    Article  CAS  Google Scholar 

  13. Ghosh, K. K. et al. Ligand-enabled γ-C(sp3)–H olefination of free carboxylic acids. Angew. Chem. Int. Ed. 59, 12848–12852 (2020).

    Article  CAS  Google Scholar 

  14. Meng, G., Hu, L., Tomanik, M. & Yu, J.-Q. β- and γ-C(sp3)–H heteroarylation of free carboxylic acids: a modular synthetic platform for diverse quaternary carbon centers. Angew. Chem. Int. Ed. 62, e202214459 (2023).

    Article  CAS  Google Scholar 

  15. Das, J., Pal, T., Ali, W., Sahoo, S. R. & Maiti, D. Pd-catalyzed dual-γ-1,1-C(sp3)–H activation of free aliphatic acids with Allyl–O moieties. ACS Catal. 12, 11169–11176 (2022).

    Article  CAS  Google Scholar 

  16. Kang, G., Strassfeld, D. A., Sheng, T., Chen, C.-Y. & Yu, J.-Q. Transannular C–H functionalization of cycloalkane carboxylic acids. Nature 618, 519–525 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang, T. et al. Enantioselective remote methylene C–H (hetero)arylation of cycloalkane carboxylic acids. Science 384, 793–798 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sadana, A. K., Saini, R. K. & Billups, W. E. Cyclobutarenes and related compounds. Chem. Rev. 103, 1539–1602 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Elnaggar, M. S. et al. Hydroquinone derivatives from the marine-derived fungus Gliomastix sp. RSC Adv. 7, 30640–30649 (2017).

    Article  CAS  Google Scholar 

  20. Psotka, M. A. & Teerlink, J. R. Role in the chronic heart failure armamentarium. Circulation 133, 2066–2075 (2016).

    Article  CAS  PubMed  Google Scholar 

  21. Tsotinis, A., Afroudakis, P. A., Garratt, P. J., Bocianowska-Zbrog, A. & Sugden, D. Benzocyclobutane, benzocycloheptane and heptene derivatives as melatonin agonists and antagonists. ChemMedChem 9, 2238–2243 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Swedberg, K. et al. Ivabradine and outcomes in chronic heart failure (SHIFT): a randomised placebo-controlled study. Lancet 376, 875–885 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Segura, J. L. & Martín, N. o-Quinodimethanes: efficient intermediates in organic synthesis. Chem. Rev. 99, 3199–3246 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Yang, B. & Gao, S. Recent advances in the application of Diels–Alder reactions involving o-quinodimethanes, aza-o-quinone methides and o-quinone methides in natural product total synthesis. Chem. Soc. Rev. 47, 7926–7953 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. Kirchhoff, R. A. & Bruza, K. J. Benzocyclobutenes in polymer synthesis. Prog. Polym. Sci. 18, 85–185 (1993).

    Article  CAS  Google Scholar 

  26. Harth, E. et al. A facile approach to architecturally defined nanoparticles via intramolecular chain collapse. J. Am. Chem. Soc. 124, 8653–8660 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Kotha, S., Lahiri, K. & Tangella, Y. Recent advances in benzocyclobutene chemistry. Asian J. Org. Chem. 10, 3166–3185 (2021).

    Article  CAS  Google Scholar 

  28. Schiess, P., Heitzmann, M., Rutschmann, S. & Stäheli, R. Preparation of benzocyclobutenes by flash vacuum pyrolysis. Tetrahedron Lett. 19, 4569–4572 (1978).

    Article  Google Scholar 

  29. Chaumontet, M. et al. Synthesis of benzocyclobutenes by palladium-catalyzed C–H activation of methyl groups: method and mechanistic study. J. Am. Chem. Soc. 130, 15157–15166 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Ye, J. et al. Remote C–H alkylation and C–C bond cleavage enabled by an in situ generated palladacycle. Nat. Chem. 9, 361–368 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. Provencher, P. A. et al. Pd(II)-catalyzed synthesis of benzocyclobutenes by β-methylene-selective C(sp3)–H arylation with a transient directing group. J. Am. Chem. Soc. 143, 20035–20041 (2021).

    Article  CAS  PubMed  Google Scholar 

  32. Wei, W.-X. et al. Experimental and computational studies of palladium-catalyzed spirocyclization via a Narasaka–Heck/C(sp3 or sp2)–H activation cascade reaction. J. Am. Chem. Soc. 143, 7868–7875 (2021).

    Article  CAS  PubMed  Google Scholar 

  33. Liu, J., Hao, T., Qian, L., Shi, M. & Wei, Y. Construction of benzocyclobutenes enabled by visible-light-induced triplet biradical atom transfer of olefins. Angew. Chem. Int. Ed. 61, e202204515 (2022).

    Article  CAS  Google Scholar 

  34. Talbot, F. J. T. et al. Modular synthesis of stereodefined benzocyclobutene derivatives via sequential Cu- and Pd-catalysis. ACS Catal. 11, 14448–14455 (2021).

    Article  CAS  Google Scholar 

  35. Fujii, T., Gallarati, S., Corminboeuf, C., Wang, Q. & Zhu, J. Modular synthesis of benzocyclobutenes via Pd(II)-catalyzed oxidative [2 + 2] annulation of arylboronic acids with alkenes. J. Am. Chem. Soc. 144, 8920–8926 (2022).

    Article  CAS  PubMed  Google Scholar 

  36. Yang, J.-M. et al. Regio-controllable [2 + 2] benzannulation with two adjacent C(sp3)–H bonds. Science 380, 639–644 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dubost, C. et al. Benzocyclobutane(thio) carboxamides. US patent 9878985 B2 (2018).

Download references

Acknowledgements

We thank Z. Li for help with ligand synthesis. We thank M. Gembicky and J. Bailey for X-ray crystallographic analysis. We thank L. Pasternack and G. Kroon for their assistance with NMR analysis. We gratefully acknowledge the National Institutes of Health (National Institute of General Medical Sciences, R01GM084019) and The Scripps Research Institute for financial support.

Author information

Authors and Affiliations

Authors

Contributions

J.-Q.Y. conceived the concept. L.H. discovered and developed the reaction. L.H., J.-L.Y. and Y.-K.L. developed the substrate scope. L.H., D.A.S. and J.-Q.Y. wrote the manuscript. J.-Q.Y. directed the project.

Corresponding author

Correspondence to Jin-Quan Yu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Gong Chen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Thomas West, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–5, experimental procedures, additional reaction optimization and characterization data.

Supplementary Data 1

Crystallographic data for compound 4o, CCDC 2357735.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, L., Yan, JL., Lin, YK. et al. Regiocontrollable [2 + 2] benzannulation of γ,δ-C(sp3)–H bonds with dihaloarenes using palladium catalysis. Nat. Synth 4, 1556–1564 (2025). https://doi.org/10.1038/s44160-025-00883-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44160-025-00883-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing