Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Symmetry-driven engineering of long-range-ordered ππ stacking molecules for high-efficiency perovskite photovoltaics

Abstract

The development of molecular engineering has substantially increased the power conversion efficiency of inverted p-i-n perovskite solar cells (PSCs) over the past five years, surpassing that of regular n-i-p PSCs. The strategic design of symmetric molecules to alleviate steric hindrance, thereby facilitating long-range-ordered ππ stacking on substrates, offers an effective approach for enhancing the structural organization in molecular self-assembly. Here we synthesize an axially symmetric molecule with homogeneous electron delocalization, (2-(pyren-2-yl)ethyl)phosphonic acid (pPy), which can form a long-range-ordered ππ stacking assembly on indium tin oxide substrates. Additionally, the pPy thin film demonstrates an intense and integrated Debye–Scherrer ring at q = 0.27 Å−1 with a highly ordered face-on orientation and displays more spatial uniform distribution, which effectively facilitates charge transport. The as-fabricated pPy-based PSCs achieve a power conversion efficiency of 26.6% and maintain 94% of the initial efficiency after 3,000 h of continuous simulated solar illumination following the ISOS-L-1I protocol.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Symmetric molecular design for ππ stacking.
Fig. 2: Long-range face-on ππ stacking orientation.
Fig. 3: Charge-transport mechanism.
Fig. 4: Photovoltaic performance of the PSCs.

Similar content being viewed by others

Data availability

The authors declare that data supporting the findings of this study are available within the paper and its Supplementary Information files. Source data are provided with this paper.

References

  1. Chen, J. et al. Determining the bonding–degradation trade-off at heterointerfaces for increased efficiency and stability of perovskite solar cells. Nat. Energy 10, 181–190 (2025).

    CAS  Google Scholar 

  2. Wang, D. et al. Binary microcrystal additives enabled antisolvent-free perovskite solar cells with high efficiency and stability. Adv. Energy Mater. 13, 2203649 (2023).

    Article  CAS  Google Scholar 

  3. Wang, D. et al. All-in-one additive enabled efficient and stable narrow-bandgap perovskites for monolithic all-perovskite tandem solar cells. Adv. Mater. 36, 2411677 (2024).

    Article  CAS  Google Scholar 

  4. Liang, Z. et al. Homogenizing out-of-plane cation composition in perovskite solar cells. Nature 624, 557–563 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Zhu, P. et al. Aqueous synthesis of perovskite precursors for highly efficient perovskite solar cells. Science 383, 524–531 (2024).

    Article  PubMed  CAS  Google Scholar 

  6. Best research-cell efficiency chart. National Renewable Energy Laboratory www.nrel.gov/pv/cell-efficiency.html (2025).

  7. Peng, W. et al. A versatile energy-level-tunable hole-transport layer for multi-composition inverted perovskite solar cells. Energy Environ. Sci. 18, 874–883 (2025).

    Article  CAS  Google Scholar 

  8. Zhang, S. et al. Minimizing buried interfacial defects for efficient inverted perovskite solar cells. Science 380, 404–409 (2023).

    Article  PubMed  CAS  Google Scholar 

  9. Magomedov, A. et al. Self-assembled hole transporting monolayer for highly efficient perovskite solar cells. Adv. Energy Mater. 8, 1801892 (2018).

    Article  Google Scholar 

  10. Al-Ashouri, A. et al. Conformal monolayer contacts with lossless interfaces for perovskite single junction and monolithic tandem solar cells. Energy Environ. Sci. 12, 3356–3369 (2019).

    Article  CAS  Google Scholar 

  11. Al-Ashouri, A. et al. Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction. Science 370, 1300–1309 (2020).

    Article  PubMed  CAS  Google Scholar 

  12. Lennard-Jones, J. E. The electronic structure of some diatomic molecules. Trans. Faraday Soc. 25, 668–686 (1929).

    Article  CAS  Google Scholar 

  13. Pauling, L. The nature of the chemical bond. Application of result obtained from the quantum mechanics and from a theory of paramagnetic susceptibility to the structure of molecules. J. Am. Chem. Soc. 53, 1367–1400 (1931).

    Article  CAS  Google Scholar 

  14. Zhao, K. et al. Peri-fused polyaromatic molecular contacts for perovskite solar cells. Nature 632, 301–306 (2024).

    Article  PubMed  CAS  Google Scholar 

  15. Szűcs, R., Bouit, P.-A., Nyulászi, L. & Hissler, M. Phosphorus-containing polycyclic aromatic hydrocarbons. ChemPhysChem 18, 2618–2630 (2017).

    Article  PubMed  Google Scholar 

  16. Zeng, J. et al. Small-molecule hole transport materials for >26% efficient inverted perovskite solar cells. J. Am. Chem. Soc. 147, 725–733 (2025).

    Article  PubMed  CAS  Google Scholar 

  17. Deng, J.-H. et al. ππ stacking interactions: non-negligible forces for stabilizing porous supramolecular frameworks. Sci. Adv. 6, eaax9976 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Zou, W. et al. Side-chain symmetry-breaking strategy on porphyrin donors enables high-efficiency binary all-small-molecule organic solar cells. SusMat. 4, e203 (2024).

    Article  CAS  Google Scholar 

  19. Chen, S. et al. Symmetry-induced orderly assembly achieving high-performance perylene diimide-based nonfullerene organic solar cells. CCS Chem. 3, 78–84 (2021).

    Article  CAS  Google Scholar 

  20. Jiang, W. et al. Spin-coated and vacuum-processed hole-extracting self-assembled multilayers with H-aggregation for high-performance inverted perovskite solar cells. Angew. Chem. Int. Ed. 63, e202411730 (2024).

    Article  CAS  Google Scholar 

  21. Liao, X. et al. Manipulating molecular stacking to achieve high electron mobility in 2D conjugated ultra-narrow bandgap non-fullerene acceptors with absorption beyond 1000 nm. Adv. Funct. Mater. 34, 2405728 (2024).

    Article  CAS  Google Scholar 

  22. Ren, J. et al. Optimizing molecular packing via steric hindrance for reducing non-radiative recombination in organic solar cells. Angew. Chem. Int. Ed. 63, e202406153 (2024).

    Article  CAS  Google Scholar 

  23. He, R. et al. Improving interface quality for 1-cm2 all-perovskite tandem solar cells. Nature 618, 80–86 (2023).

    Article  PubMed  CAS  Google Scholar 

  24. Zhao, S. et al. Cross-plane transport in a single-molecule two-dimensional van der Waals heterojunction. Sci. Adv. 6, eaba6714 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Wan, Y. et al. Facilely achieving near-infrared-II J-aggregates through molecular bending on a donor–acceptor fluorophore for high-performance tumor phototheranostics. ACS Nano 18, 27949–27961 (2024).

    Article  PubMed  CAS  Google Scholar 

  26. Wang, D. et al. Rigid molecules anchoring on NiOx enable >26% efficiency perovskite solar cells. Joule 9, 101815 (2025).

    Article  CAS  Google Scholar 

  27. Gao, Z.-W. et al. Eutectic molecule ligand stabilizes photoactive black phase perovskite. Nat. Photon. 19, 258–263 (2025).

    Article  CAS  Google Scholar 

  28. Ni, Z. et al. Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells. Science 367, 1352–1358 (2020).

    Article  PubMed  CAS  Google Scholar 

  29. Zhang, J. et al. Tuning perovskite surface polarity via dipole moment engineering for efficient hole-transport-layer-free Sn–Pb mixed-perovskite solar cells. ACS Appl. Mater. Interfaces 15, 15321–15331 (2023).

    Article  PubMed  CAS  Google Scholar 

  30. Khenkin, M. V. et al. Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures. Nat. Energy 5, 35–49 (2020).

    Article  Google Scholar 

  31. Li, M., Liu, M., Qi, F., Lin, F. R. & Jen, A. K. Y. Self-assembled monolayers for interfacial engineering in solution-processed thin-film electronic devices: design, fabrication, and applications. Chem. Rev. 124, 2138–2204 (2024).

    Article  PubMed  CAS  Google Scholar 

  32. Ameen, S. et al. 3,6-Bis(methylthio)-9H-carbazole based self-assembled monolayer for highly efficient and stable inverted perovskite solar cells. Angew. Chem. Int. Ed. 64, e202423206 (2025).

    Article  CAS  Google Scholar 

  33. Torres Merino, L. V. et al. Impact of the valence band energy alignment at the hole-collecting interface on the photostability of wide band-gap perovskite solar cells. Joule 8, 2585–2606 (2024).

    Article  CAS  Google Scholar 

  34. Noether, E. Invariante variation problems. Nachr. Ges. Wiss. Göttingen, Math.-Phys. Kl. 1918, 235–257 (1918).

    Google Scholar 

  35. Huang, J. GIWAXS script. Gitee https://gitee.com/swordshinehjy/giwaxs-script (2025).

Download references

Acknowledgements

B.X. acknowledges the National Key Research and Development Project from the Ministry of Science and Technology of China (2021YFB3800101), the Guangdong Basic and Applied Basic Research Foundation (2023A1515012797, 2023B1515120031), the Shenzhen Science and Technology Innovation Committee (JCYJ20220530113205013, JCYJ20220818100211025, SGDX20230116091649013), SUSTech Energy Institute for Carbon Neutrality (High Level of Special Funds, G03034K001) and the Project for Building a Science and Technology Innovation Center Facing South Asia and Southeast Asia (202403AP140015). Y.Z. acknowledges the National Natural Science Foundation of China (62204108). P.Z. acknowledges the National Natural Science Foundation of China (224B2904). The authors also acknowledge the technical support from SUSTech Core Research Facilities and the Center for Computational Science and Engineering, and the beamline BL14B1 of the Shanghai Synchrotron Radiation Facility (SSRF) for assistance with the GIWAXS measurements.

Author information

Authors and Affiliations

Contributions

P.Z., Z. Liu, Y.Z., X.W. and B.X. supervised the project. P.Z. conceptualized the research idea and designed the experimental framework. P.Z. and Z. Liu analysed the experimental data. P.Z. and Z. Liu wrote the paper. P.Z., Y.Z., Z. Liu, H.-Y.H. and B.X. revised the paper. Z. Liu contributed to synthesizing the mPy and pPy molecules and characterizing the molecule films and perovskite solar cells. X.L. and J.L. contributed to the DFT calculation and molecular dynamics simulations. S.H. and Y.S. contributed to the DFT calculation. L.W. contributed to the TGA of the mPy and pPy molecules. D.W. and J.Z. performed the TAS measurement and analysis. Z. Lei, F.S. and W.P. contributed to fabricating the inverted perovskite solar cells and performing the stability test. Z. Liang, Z. Li and X.P. contributed to space-charge-limited analysis. All authors contributed to discussions about the paper.

Corresponding authors

Correspondence to Xingzhu Wang, Jingbai Li, Yong Zhang or Baomin Xu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Toshinori Matsushima, Hyunjung Shin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Alexandra Groves, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Source data

Source Data Fig. 1

Statistical Source Data

Source Data Fig. 2

Statistical Source Data

Source Data Fig. 3

Statistical Source Data

Source Data Fig. 4

Statistical Source Data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, P., Liu, Z., Lei, X. et al. Symmetry-driven engineering of long-range-ordered ππ stacking molecules for high-efficiency perovskite photovoltaics. Nat. Synth 5, 64–73 (2026). https://doi.org/10.1038/s44160-025-00896-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44160-025-00896-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing