Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Direct regioselective C-3 halogenation of pyridines

Abstract

Pyridine derivatives are one of the most common heterocycles in chemistry. The 3-halopyridines are generally synthesized by indirect methods, including functional group conversion or a temporary dearomatization–rearomatization process. Although the direct electrophilic halogenation of pyridines provides straightforward access to 3-halopyridines, it has been rarely reported owing to the poor π nucleophilicity of pyridines. Here we describe a general direct regioselective C-3 halogenation of pyridines promoted by an ether solvation effect. This radical process enables the regioselective reaction to occur at the C-3 position of pyridines, rather than other aromatic C–H bonds, and can be applied to the late-stage halogenation of complex molecules. The mechanistic studies show that the interaction between the pyridine substrate, ether solvent and haleniums plays a dominant role in the reactivity and regioselectivity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Strategies for regioselective C-3 halogenation of pyridines.
Fig. 2: C-3 halogenation of pyridines.
Fig. 3: Comparison of selectivity with literature methods.
Fig. 4: Applications of 3-halopyridines.
Fig. 5: Mechanistic investigations.
Fig. 6: Density functional theory analysis of C-3 halogenation of pyridines.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available in the Article and its Supplementary Information. Source data are provided with this paper.

References

  1. Baumann, M. & Baxendale, I. R. An overview of the synthetic routes to the best selling drugs containing 6-membered heterocycles. Beilstein J. Org. Chem. 9, 2265–2319 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Wurz, R. P. Chiral dialkylaminopyridine catalysts in asymmetric synthesis. Chem. Rev. 107, 5570–5595 (2007).

    Article  PubMed  CAS  Google Scholar 

  3. Sun, H., Keefer, C. E. & Scott, D. O. Systematic and pairwise analysis of the effects of aromatic halogenation and trifluoromethyl substitution on human liver microsomal clearance. Drug Metab. Lett. 5, 232–242 (2011).

    Article  PubMed  CAS  Google Scholar 

  4. Auffinger, P., Hays, F. A., Westhof, E. & Ho, P. S. Halogen bonds in biological molecules. Proc. Natl Acad. Sci. USA 48, 16789–16794 (2004).

    Article  Google Scholar 

  5. Josephitis, C. M., Nguyen, H. M. H. & McNally, A. Late-stage C–H functionalization of azines. Chem. Rev. 123, 7655–7691 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Murakami, K., Yamada, S., Kaneda, T. & Itami, K. C–H functionalization of azines. Chem. Rev. 117, 9302–9332 (2017).

    Article  PubMed  CAS  Google Scholar 

  7. Tagata, T. & Nishida, M. Palladium charcoal-catalyzed Suzuki–Miyaura coupling to obtain arylpyridines and arylquinolines. J. Org. Chem. 68, 9412–9415 (2003).

    Article  PubMed  CAS  Google Scholar 

  8. Bunnett, J. F. & Zahler, R. E. Aromatic nucleophilic substitution reactions. Chem. Rev. 49, 273–412 (1951).

    Article  CAS  Google Scholar 

  9. Fier, P. S. & Hartwig, J. S. Selective C-H fluorination of pyridines and diazines inspired by a classic amination reaction. Science 342, 956–960 (2013).

    Article  PubMed  CAS  Google Scholar 

  10. Levy, J. N., Alegre-Requena, J. V., Liu, R., Paton, R. S. & McNally, A. Selective halogenation of pyridines using designed phosphine reagents. J. Am. Chem. Soc. 142, 11295–11305 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Zhang, L., Yan, J., Ahmadli, D., Wang, Z. & Ritter, T. Electron-transfer-enabled concerted nucleophilic fluorination of azaarenes: selective C–H fluorination of quinolines. J. Am. Chem. Soc. 145, 20182–20188 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Li, C. et al. Regioselective synthesis of 4-functionalized pyridines. Chem 10, 628–643 (2024).

    Article  CAS  Google Scholar 

  13. Sun, G. Q. et al. Electrochemical reactor dictates site selectivity in N-heteroarene carboxylations. Nature 615, 67–72 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Wubbolt, S. & Oestreich, M. Catalytic electrophilic C–H silylation of pyridines enabled by temporary dearomatization. Angew. Chem. Int. Ed. 54, 15876–15879 (2015).

    Article  Google Scholar 

  15. Zhou, X. Y., Zhang, M., Liu, Z., He, J. H. & Wang, X. C. C3-selective trifluoromethyl thiolation and difluoromethyl thiolation of pyridines and pyridine drugs via dihydropyridine intermediates. J. Am. Chem. Soc. 144, 14463–14470 (2022).

    Article  PubMed  CAS  Google Scholar 

  16. Liu, Z. et al. Asymmetric C3-allylation of pyridines. J. Am. Chem. Soc. 145, 11789–11797 (2023).

    Article  PubMed  CAS  Google Scholar 

  17. Larsen, M. A. & Hartwig, J. F. Iridium-catalyzed C–H borylation of heteroarenes: scope, regioselectivity, application to late-stage functionalization, and mechanism. J. Am. Chem. Soc. 136, 4287–4299 (2014).

    Article  PubMed  CAS  Google Scholar 

  18. Cheng, C. & Hartwig, J. F. Iridium-catalyzed silylation of aryl C–H bonds. J. Am. Chem. Soc. 137, 592–595 (2015).

    Article  PubMed  CAS  Google Scholar 

  19. Yang, L., Uemura, N. & Nakao, Y. meta-Selective C–H borylation of benzamides and pyridines by an iridium–Lewis acid bifunctional catalyst. J. Am. Chem. Soc. 141, 7972–7979 (2019).

    Article  PubMed  CAS  Google Scholar 

  20. Petrone, D. A., Ye, J. & Lautens, M. Modern transition-metal-catalyzed carbon–halogen bond formation. Chem. Rev. 116, 8003–8104 (2016).

    Article  PubMed  CAS  Google Scholar 

  21. Saikia, I., Borah, A. J. & Phukan, P. Use of bromine and bromo-organic compounds in organic synthesis. Chem. Rev. 116, 6837–7042 (2016).

    Article  PubMed  CAS  Google Scholar 

  22. Barluenga, J., González, J. M., Campos, P. J. & Asensio, G. I(py)2BF4, a new reagent in organic synthesis: general method for the 1,2-iodofunctionalization of olefins. Angew. Chem. Int. Ed. 24, 319–320 (1985).

    Article  Google Scholar 

  23. Rodriguez, R. A. et al. Palau’chlor: a practical and reactive chlorinating reagent. J. Am. Chem. Soc. 136, 6908–6911 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Snyder, S. A. & Treitler, D. S. Et2SBrSbCl5Br: an effective reagent for direct bromonium-induced polyene cyclizations. Angew. Chem. Int. Ed. 48, 7899–7903 (2009).

    Article  CAS  Google Scholar 

  25. Wang, Y. et al. Discovery of N–X anomeric amides as electrophilic halogenation reagents. Nat. Chem. 16, 1539–1545 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Wang, W. et al. Catalytic electrophilic halogenation of arenes with electron-withdrawing substituents. J. Am. Chem. Soc. 144, 13415–13425 (2022).

    Article  PubMed  CAS  Google Scholar 

  27. Song, S. et al. DMSO-catalysed late-stage chlorination of (hetero)arenes. Nat. Catal. 3, 107–115 (2020).

    Article  CAS  Google Scholar 

  28. Mo, F. Y. et al. Gold-catalyzed halogenation of aromatics by N-halosuccinimides. Angew. Chem. Int. Ed. 49, 2028–2032 (2010).

    Article  CAS  Google Scholar 

  29. Nishii, Y., Ikeda, M., Hayashi, Y., Kawauchi, S. & Miura, M. Triptycenyl sulfide: a practical and active catalyst for electrophilic aromatic halogenation using N-halosuccinimides. J. Am. Chem. Soc. 142, 1621–1629 (2020).

    Article  PubMed  CAS  Google Scholar 

  30. Wang, W. et al. Oxoammonium salts are catalysing efficient and selective halogenation of olefins, alkynes and aromatics. Nat. Commun. 12, 3873 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Kona, C. N. et al. Aromatic halogenation using carborane catalyst. Chem 10, 402–413 (2024).

    Article  CAS  Google Scholar 

  32. Xiong, X. & Yeung, Y. Y. Highly ortho-selective chlorination of anilines using a secondary ammonium salt organocatalyst. Angew. Chem. Int. Ed. 55, 16101–16105 (2016).

    Article  CAS  Google Scholar 

  33. Eguchi, H. et al. Halogenation using N-halogenocompounds. II. Acid catalyzed bromination of aromatic compounds with 1,3-dibromo-5,5-dimethylhydantoin. Bull. Chem. Soc. Jpn 67, 1918–1921 (1994).

    Article  CAS  Google Scholar 

  34. Prakash, G. K. S. et al. N-halosuccinimide/BF3H2O, efficient electrophilic halogenating systems for aromatics. J. Am. Chem. Soc. 126, 15770–15776 (2004).

    Article  PubMed  CAS  Google Scholar 

  35. Fosu, S. C., Hambira, C. M., Chen, A. D., Fuchs, J. R. & Nagib, D. A. Site-selective C–H functionalization of (hetero)arenes via transient, non-symmetric iodanes. Chem 5, 417–428 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Gupta, S. S., Manisha, Kumar, R., Dhiman, A. K. & Sharma, U. Predictable site-selective functionalization: Promoter group assisted para-halogenation of N-substituted (hetero)aromatics under metal-free condition. Org. Biomol. Chem. 19, 9675–9687 (2021).

    Article  PubMed  CAS  Google Scholar 

  37. Li, J. et al. Photoredox catalysis with aryl sulfonium salts enables site-selective late-stage fluorination. Nat. Chem. 12, 56–62 (2020).

    Article  PubMed  CAS  Google Scholar 

  38. Ni, S. et al. Nickel meets aryl thianthrenium salts: Ni(I)-catalyzed halogenation of arenes. J. Am. Chem. Soc. 145, 9988–9993 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Cao, H., Cheng, Q. & Studer, A. meta-Selective C-H functionalization of pyridines. Angew. Chem. Int. Ed. 62, e202302941 (2023).

    Article  CAS  Google Scholar 

  40. Olah, G. A. Aromatic substitution. XXVIII. Mechanism of electrophilic aromatic substitutions. Acc. Chem. Res. 4, 240–248 (1971).

    Article  CAS  Google Scholar 

  41. Clososki, G. C., Rohbogner, C. J. & Knochel, P. Direct magnesiation of polyfunctionalized arenes and heteroarenes using (tmp)2Mg·2LiCl. Angew. Chem. Int. Ed. 46, 7681–7684 (2007).

    Article  CAS  Google Scholar 

  42. Murphy, J. M., Liao, X. & Hartwig, J. F. Meta halogenation of 1,3-disubstituted arenes via iridium-catalyzed arene borylation. J. Am. Chem. Soc. 129, 15434–15435 (2007).

    Article  PubMed  CAS  Google Scholar 

  43. Chen, T. Q. et al. A unified approach to decarboxylative halogenation of (hetero)aryl carboxylic acids. J. Am. Chem. Soc. 144, 8296–8305 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Boyle, B. T., Levy, J. N., Lescure, L., Paton, R. S. & McNally, A. Halogenation of the 3-position of pyridines through Zincke imine intermediates. Science 378, 773–779 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Hilton, M. C., Dolewski, R. D. & McNally, A. Selective functionalization of pyridines via heterocyclic phosphonium salts. J. Am. Chem. Soc. 138, 13806–13809 (2016).

    Article  PubMed  CAS  Google Scholar 

  46. Zhang, X. et al. Phosphorus-mediated sp2sp3 couplings for C–H fluoroalkylation of azines. Nature 594, 217–222 (2021).

    Article  PubMed  CAS  Google Scholar 

  47. Li, S. et al. C3 selective chalcogenation and fluorination of pyridine using classic Zincke imine intermediates. Nat. Commun. 15, 7420 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Cao, H., Cheng, Q. & Studer, A. Radical and ionic meta-C–H functionalization of pyridines, quinolines, and isoquinolines. Science 378, 779–785 (2022).

    Article  PubMed  CAS  Google Scholar 

  49. Cao, H., Bhattacharya, D., Cheng, Q. & Studer, A. C–H functionalization of pyridines via oxazino pyridine intermediates: switching to para-selectivity under acidic conditions. J. Am. Chem. Soc. 145, 15581–15588 (2023).

    Article  PubMed  CAS  Google Scholar 

  50. Guo, S.-M., Xu, P. & Studer, A. meta-Selective copper-catalyzed C−H arylation of pyridines and isoquinolines through dearomatized intermediates. Angew. Chem. Int. Ed. 63, e202405385 (2024).

    Article  CAS  Google Scholar 

  51. Xu, P. et al. Introduction of the difluoromethyl group at the meta- or para-position of pyridines through regioselectivity switch. Nat. Commun. 15, 4121 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Qin, S. et al. Electrochemical meta-C–H sulfonylation of pyridines with nucleophilic sulfinates. Nat. Commun. 15, 7428 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Wang, W. J., Song, S. & Jiao, N. Late-stage halogenation of complex substrates with readily available halogenating reagents. Acc. Chem. Res. 57, 3161 (2024).

    Article  PubMed  CAS  Google Scholar 

  54. Yamamoto, H., Zhang, Y. & Shibatomi, K. Lewis acid catalyzed highly selective halogenation of aromatic compounds. Synlett 37, 2837–2842 (2005).

    Article  Google Scholar 

  55. Guan, D., Zhou, A. X., Chen, X. M., Guo, X. & Li, G. T. Method for preparation of nicergoline. CN patent 102,718,761 (2012).

  56. Zhang, P., Liu, R. & Cook, J. M. Regiospecific bromination of 3-methylindoles with N-bromosuccinimide. Tetrahedron Lett. 36, 3103–3106 (1995).

    Article  CAS  Google Scholar 

  57. Franck, G., Brill, M. & Helmchen, G. Dibenzo[a,e]cyclooctene: multi-gram synthesis of a bidentate ligand. Org. Synth. 89, 55–65 (2012).

    Article  CAS  Google Scholar 

  58. Barluenga, J., González-Bobes, F., Ananthoju, S. R., García-Martín, M. A. & González, J. M. Oxidative opening of cycloalkanols: an efficient entry to ω-iodocarbonyl compounds. Angew. Chem. Int. Ed. 40, 3389–3392 (2001).

    Article  CAS  Google Scholar 

  59. Schmid, H. & Leutenegger, W. E. Über die Einwirkung von N-Brom-succinimid auf Acridin. Helv. Chim. Acta 30, 1965–1975 (1947).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the National Key Research and Development Project (grant no. 2023YFF1205103 to S.S.) and the National Natural Science Foundation of China (grant nos. 22071005 and 22371007 to S.S.) for financial support.

Author information

Authors and Affiliations

Authors

Contributions

C.L. and S.S. conceived and designed the experiments. X.L. supervised the mechanistic studies. C.L., J.L., Z.W. and D.O. performed the experiments. C.L., J.L., Z.W., D.O., N.J. and S.S. analysed data. C.L., N.J. and S.S. wrote the paper. N.J. and S.S. directed the project.

Corresponding authors

Correspondence to Ning Jiao or Song Song.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Xiao-Chen Wang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Thomas West, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–9, Tables 1–5 and Schemes 1–23.

Source data

Source Data Fig. 5

13C NMR spectroscopy data for Fig. 5b,c.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Li, X., Li, J. et al. Direct regioselective C-3 halogenation of pyridines. Nat. Synth 5, 36–45 (2026). https://doi.org/10.1038/s44160-025-00915-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44160-025-00915-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing