Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Aromaticity and through-space electronic coupling in [2]catenanes comprising two intertwined globally electron-delocalized octaphyrinoid rings

Abstract

π-Conjugated molecules with non-trivial topologies, such as catenanes and molecular knots, offer aromaticity and through-space electronic and magnetic interactions absent in traditional planar π systems. However, their synthesis remains challenging, with previous examples showing only localized aromaticity in individual benzenoid rings. Here we report the synthesis of a [2]catenane comprising 2 intertwined octaphyrinoid rings, each with 34 globally delocalized π electrons, achieved using a passive metal-template strategy with 2,2′-dipyrromethene as the directing ligand. X-ray crystallographic analysis reveals a nearly orthogonal spatial arrangement of the rings in neutral catenane, stabilized by multiple [NH···N] and [S···N] close contacts. These rings exhibit global aromaticity with entangled magnetic shielding interactions. Upon four-electron oxidation, the system converts to a tetracation with two globally antiaromatic (32π) rings, in which through-space bonding interactions diminish the antiaromatic destabilization. Notably, counterions also affect the (anti)aromaticity of the tetracations in the single-crystal state, highlighting a dynamic interplay between molecular topology, electronic structure and external interactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Molecular design and synthesis.
Fig. 2: Electrochemical and optical properties.
Fig. 3: X-ray crystallographic structures.
Fig. 4: Theoretical calculations of 1-Zn, 1-Zn4+·(SbF6)4, 1 and 14+·(SbCl6)4 in the ground state.
Fig. 5: 1H NMR (500 MHz) spectra.

Data availability

The authors declare that the data supporting the findings of this study are available within the paper and its Supplementary Information. Crystallographic data for the structures reported in this article have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 2407480 (3), 2407481 (1), 2407482 (1-Zn), 2407483 (8), 2407485 (1-Zn4+·(SbF6)4), 2407486 (1-Zn4+·(SbCl6)4), 2407487 (OCT-1), 2407488 (14+·(SbCl6)4), 2407489 ([OCT-2 + H]+·(SbF6)), 2407490 (OCT-1·(SbF6)) and 2407491 (OCT-12+·(BF4)(Cl)). Copies of the data can be obtained free of charge via the Cambridge Crystallographic Data Center at https://www.ccdc.cam.ac.uk/structures/.

References

  1. Herges, R. Topology in chemistry: designing Möbius molecules. Chem. Rev. 106, 4820–4842 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Segawa, Y., Levine, D. R. & Itami, K. Topologically unique molecular nanocarbons. Acc. Chem. Res. 52, 2760–2767 (2019).

    Article  CAS  PubMed  Google Scholar 

  3. Leonhardt, E. J. & Jasti, R. Emerging applications of carbon nanohoops. Nat. Chem. Rev. 3, 672–686 (2019).

    Article  CAS  Google Scholar 

  4. Guo, Q.-H., Qiu, Y., Wang, M.-X. & Stoddart, J. F. Aromatic hydrocarbon belts. Nat. Chem. 13, 402–419 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Imoto, D., Yagi, A. & Itami, K. Carbon nanobelts: brief history and perspective. Precis. Chem. 1, 516–523 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ajami, D., Oeckler, O., Simon, A. & Herges, R. Synthesis of a Möbius aromatic hydrocarbon. Nature 426, 819–821 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Naulet, G. et al. Cyclic tris-[5]helicenes with single and triple twisted Möbius topologies and Möbius aromaticity. Chem. Sci. 9, 8930–8936 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jiang, X. et al. Kinetic control in the synthesis of a Möbius tris((ethynyl)[5]helicene) macrocycle using alkyne metathesis. J. Am. Chem. Soc. 142, 6493–6498 (2020).

    Article  CAS  PubMed  Google Scholar 

  9. Terabayashi, T. et al. Synthesis of twisted [n]cycloparaphenylene by alkene insertion. Angew. Chem. Int. Ed. 62, e202214960 (2023).

    Article  CAS  Google Scholar 

  10. Zhou, Q. et al. [5]Helicene based π-conjugated macrocycles with persistent figure-eight and Möbius shapes: efficient synthesis, chiral resolution and bright circularly polarized luminescence. Angew. Chem. Int. Ed. 63, e202417749 (2024).

    Google Scholar 

  11. Segawa, Y. et al. Synthesis of a Möbius carbon nanobelt. Nat. Synth. 1, 535–541 (2022).

    Article  CAS  Google Scholar 

  12. Fan, W. et al. Synthesis and chiral resolution of a triply twisted Möbius carbon nanobelt. Nat. Synth. 2, 880–887 (2023).

    Article  CAS  Google Scholar 

  13. Nogami, J. et al. Catalytic stereoselective synthesis of doubly, triply and quadruply twisted aromatic belts. Nat. Synth. 2, 888–897 (2023).

    Article  CAS  Google Scholar 

  14. Stoddart, J. F. The chemistry of the mechanical bond. Chem. Soc. Rev. 38, 1802–1820 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Stoddart, J. F. Mechanically interlocked molecules (MIMs)—molecular shuttles, switches, and machines. Angew. Chem. Inter. Ed. 56, 11094–11125 (2017).

    Article  CAS  Google Scholar 

  16. Albrecht-Gary, A. M. et al. Interlocked macrocyclic ligands: a kinetic catenand effect in copper(I) complexes. J. Am. Chem. Soc. 107, 3205–3209 (1985).

    Article  CAS  Google Scholar 

  17. Mena-Hernando, S. & Pérez, E. M. Mechanically interlocked materials. Rotaxanes and catenanes beyond the small molecule. Chem. Soc. Rev. 48, 5016–5032 (2019).

    Article  CAS  PubMed  Google Scholar 

  18. Bäuerle, P. et al. Oligothiophene-based catenanes: synthesis and electronic properties of a novel conjugated topological structure. Angew. Chem. Int. Ed. 46, 363–368 (2006).

    Article  Google Scholar 

  19. Ammann, M., Rang, A., Schalley, C. A. & Bäuerle, P. A Synthetic approach towards interlocked π-conjugated macrocycles. Eur. J. Org. Chem. 9, 1940–1948 (2006).

    Article  Google Scholar 

  20. Götz, G. et al. π-Conjugated [2]catenanes based on oligothiophenes and phenanthrolines: efficient synthesis and electronic properties. Chem. Eur. J. 21, 7193–7210 (2015).

    Article  PubMed  Google Scholar 

  21. Fan, Y.-Y. et al. An isolable catenane consisting of two Möbius conjugated nanohoops. Nat. Commun. 9, 3037 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Bu, A. et al. A conjugated covalent template strategy for all-benzene catenane synthesis. Angew. Chem. Int. Ed. 61, 363–368 (2022).

    Article  Google Scholar 

  23. Segawa, Y. et al. Topological molecular nanocarbons: all-benzene catenane and trefoil knot. Science 365, 272–276 (2019).

    Article  CAS  PubMed  Google Scholar 

  24. May, J. H., Van Raden, J. M., Maust, R. L., Zakharov, L. N. & Jasti, R. Active template strategy for the preparation of π-conjugated interlocked nanocarbons. Nat. Chem. 15, 170–176 (2023).

    Article  CAS  PubMed  Google Scholar 

  25. Oka, Y., Masai, H. & Terao, J. Multiple structural switching of [3]catenanes with cyclic porphyrin dimers by complexation with amine ligands. Angew. Chem. Int. Ed. 62, e202217002 (2023).

    Article  CAS  Google Scholar 

  26. Lash, T. D. Origin of aromatic character in porphyrinoid systems. J. Porphyr. Phthalocyanines 15, 1093–1115 (2011).

    Article  CAS  Google Scholar 

  27. Ivanov, A. S. & Boldyrev, A. I. Deciphering aromaticity in porphyrinoids via adaptive natural density partitioning. Org. Biomol. Chem. 12, 6145–6150 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Peeks, M. D., Claridge, T. D. W. & Anderson, H. L. Aromatic and antiaromatic ring currents in a molecular nanoring. Nature 541, 200–203 (2017).

    Article  CAS  PubMed  Google Scholar 

  29. Tanaka, T. & Osuka, K. Chemistry of meso-aryl-substituted expanded porphyrins: aromaticity and molecular twist. Chem. Rev. 117, 2584–2640 (2017).

    Article  CAS  PubMed  Google Scholar 

  30. Shin, J.-Y. et al. Aromaticity and photophysical properties of various topology-controlled expanded porphyrins. Chem. Soc. Rev. 39, 2751–2767 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Heilbronner, E. Hückel molecular orbitals of Möbius-type conformations of annulenes. Tetrahedron Lett. 29, 1923–1928 (1964).

    Article  Google Scholar 

  32. Rzepa, H. S. Möbius aromaticity and delocalization. Chem. Rev. 105, 3697–3715 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Stępień, M., Latos-Grażyński, L., Sprutta, N., Chwalisz, P. & Szterenberg, L. Expanded porphyrin with a split personality: a Hückel–Möbius aromaticity switch. Angew. Chem. Int. Ed. 46, 7869–7873 (2007).

    Article  Google Scholar 

  34. Yoon, Z. S., Osuka, A. & Kim, D. Möbius aromaticity and antiaromaticity in expanded porphyrins. Nat. Chem. 1, 113–122 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Stępień, M., Sprutta, N. & Latos-Grażyński, L. Figure eights, Möbius bands, and more: conformation and aromaticity of porphyrinoids. Angew. Chem. Int. Ed. 50, 4288–4340 (2011).

    Article  Google Scholar 

  36. Ni, Y. et al. 3D global aromaticity in a fully conjugated diradicaloid cage at different oxidation states. Nat. Chem. 12, 242–248 (2020).

    Article  CAS  PubMed  Google Scholar 

  37. Ren, L., Han, Y., Hou, X., Ni, Y. & Wu, J. All are aromatic: a 3D globally aromatic cage containing five types of 2D aromatic macrocycles. Chem 7, 3442–3453 (2021).

    Article  CAS  Google Scholar 

  38. Nozawa, R. et al. Stacked antiaromatic porphyrins. Nat. Commun. 7, 13620 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nozawa, R. et al. Three-dimensional aromaticity in an antiaromatic cyclophane. Nat. Commun. 10, 3576 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Dietrich-Buchecker, C. O., Sauvage, J.-P. & Kintzinger, J. P. Une nouvelle famille de molecules: les metallo-catenanes. Tetrahedron Lett. 24, 5095–5098 (1983).

    Article  CAS  Google Scholar 

  41. Fujita, M., Ibukuro, F., Hagihara, H. & Ogura, K. Quantitative self-assembly of a [2]catenane from two preformed molecular rings. Nature 367, 720–723 (1994).

    Article  CAS  Google Scholar 

  42. Hunter, C. A. Synthesis and structure elucidation of a new [2]-catenane. J. Am. Chem. Soc. 114, 5303–5311 (1992).

    Article  CAS  Google Scholar 

  43. Ashton, P. R. et al. A [2] catenane made to order. Angew. Chem. Int. Ed. 28, 1396–1399 (1989).

    Article  Google Scholar 

  44. Aucagne, V., Hänni, K. D., Leigh, D. A., Lusby, P. J. & Walker, D. B. Catalytic ‘click’ rotaxanes: a substoichiometric metal-template pathway to mechanically interlocked architectures. J. Am. Chem. Soc. 128, 2186–2187 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Berná, J. et al. Cadiot–Chodkiewicz active template synthesis of rotaxanes and switchable molecular shuttles with weak intercomponent interactions. Angew. Chem. Int. Ed. 47, 4392–4396 (2008).

    Article  Google Scholar 

  46. Singh, R. S., Paitandi, R. P., Gupta, R. K. & Pandey, D. S. Recent developments in metal dipyrrin complexes: design, synthesis, and applications. Coord. Chem. Rev. 414, 213269 (2020).

    Article  CAS  Google Scholar 

  47. Schenk, R. & Müllen, K. Multiply charged anions from molecules with extended π-systems. Tetrahedron Lett. 31, 7367–7370 (1990).

    Article  CAS  Google Scholar 

  48. Sprutta, N. & Latos-Grazyński, L. Figure-eight tetrathiaoctaphyrin and dihydrotetrathiaoctaphyrin. Chem. Eur. J. 23, 5099–5112 (2001).

    Article  Google Scholar 

  49. Tanaka, Y. et al. Metalation of expanded porphyrins: a chemical trigger used to produce molecular twisting and Möbius aromaticity. Angew. Chem. Int. Ed. 47, 681–684 (2008).

    Article  CAS  Google Scholar 

  50. Lu, T. & Chen, Q. A simple method of identifying π orbitals for non-planar systems and a protocol of studying π electronic structure. Theor. Chem. Acc. 139, 25 (2020).

    Article  CAS  Google Scholar 

  51. Geuenich, D., Hess, K., Köhler, F. & Herges, R. Anisotropy of the induced current density (ACID), a general method to quantify and visualize electronic delocalization. Chem. Rev. 105, 3758–3772 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Sessler, J. L., Weghorn, S. J., Lynch, V. & Johnson, M. R. Turcasarin, the largest expanded porphyrin to date. Angew. Chem. Int. Ed. 33, 1509–1512 (1994).

    Article  Google Scholar 

  53. Lash, T. D. Giant prohyrinoids: from figure eights to nanomolecular cavities. Angew. Chem. Int. Ed. 39, 1763–1767 (2000).

    Article  CAS  Google Scholar 

  54. Choi, C. H. & Kertesz, M. Bond length alternation and aromaticity in large annulenes. J. Chem. Phy. 108, 6681–6688 (1998).

    Article  CAS  Google Scholar 

  55. Sundholm, D., Fliegl, H. & Berger, R. J. F. Calculations of magnetically induced current densities: theory and applications. WIREs Comput. Mol. Sci. 6, 639–678 (2016).

    Article  CAS  Google Scholar 

  56. Humphrey, W., Dalke, A. & Schulten, K. VMD-visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).

    Article  CAS  PubMed  Google Scholar 

  57. Bleaney, B. & Bowers, K. D. Anomalous paramagnetism of copper acetate. Proc. R. Soc. Lond. A 214, 451–465 (1952).

    Article  CAS  Google Scholar 

  58. Zeng, Z. et al. Pro-aromatic and antiaromatic π-conjugated molecules: an irresistible wish to be diradicals. Chem. Soc. Rev. 44, 6578–6596 (2015).

    Article  CAS  PubMed  Google Scholar 

  59. Wiberg, K. B. Antiaromaticity in monocyclic conjugated carbon rings. Chem. Rev. 101, 1317–1331 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Kaufman, H. S., Fankuchen, I. & Mark, H. Structure of cyclo-octatetraene. Nature 161, 165 (1948).

    Article  CAS  Google Scholar 

  61. Baird, N. C. Quantum organic photochemistry. II. Resonance and aromaticity in the lowest 3ππ* state of cyclic hydrocarbons. J. Am. Chem. Soc. 94, 4941–4948 (1972).

    Article  CAS  Google Scholar 

  62. Rosenberg, M., Dahlstrand, C., Kilså, K. & Ottosson, H. Excited state aromaticity and antiaromaticity: opportunities for photophysical and photochemical rationalizations. Chem. Rev. 114, 5379–5425 (2014).

    Article  CAS  PubMed  Google Scholar 

  63. Liu, C. et al. Macrocyclic polyradicaloids with unusual super-ring structure and global aromaticity. Chem 4, 1586–1595 (2018).

    Article  CAS  Google Scholar 

  64. Kimball, J. C. & Frisch, H. L. Aharonov–Bohm effects in entangled molecules. Phys. Rev. Lett. 93, 093001 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Y.N. acknowledges financial support from the National Natural Science Foundation of China (grant number 22375085), the Guangdong Provincial Key Laboratory of Catalysis (grant number 22201124), the Guangdong Provincial Key Laboratory of Sustainable Biomimetic Materials and Green Energy (grant number 2024B121201003) and the Innovation Commission of Shenzhen Municipality (grant number 20231116124346001). J.W. acknowledges financial support from a Singapore MOE Tier 2 grant (MOE-T2EP10222-0003), the MOE Tier 3 program (MOE-000755-00) and the A*STAR MTC IRG project (M22K2c0083). Z.Z. acknowledges financial support from the National Natural Science Foundation of China (grant numbers 52350058, 22375059 and 52525306). We thank X. Chang for his support with X-ray diffraction data collection. We also thank H. Xia and Z. Xie for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

Z.Z., J.W. and Y.N. conceived of the idea and supervised the project. Y.N. and Y.S. synthesized the compounds and collected the spectral data. Y.N., Y.S., Z.W., L.R. and S.W. performed theoretical calculations and X-ray analysis. Y.N., Y.S. and J.H. performed the magnetic measurements and analysis. All authors participated in writing the paper.

Corresponding authors

Correspondence to Zebing Zeng, Jishan Wu or Yong Ni.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Mercedes Alonso, Milan Gembicky and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Thomas West, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Representations of the conformation and π-electronic configuration of 8.

a, Crystallographic structures depicted as oak ridge thermal ellipsoid plots (ORTEP) at 30% probability, which clearly clarify the double-twisted figure-eight conformation of 8. b, Calculated LOL-π isosurface map (isovalue: 0.3), the pink and blue surfaces are interlocked in space, revealing a double-sided lemniscular topology for the π system of 8. c, Calculated AICD plots with the magnetic field aligned along the Z-axis (perpendicular to the paper, isovalue 0.02). d, Calculated EDDB isosurface (isovalue 0.02). The AICD and EDDB plots showed discontiguous electron circuit along the conjugated backbone, manifesting the nonaromatic character of 8.

Supplementary information

Supplementary Information

Experimental methods and Supplementary Figs. 1–92 and Tables 1–15.

Supplementary Video 1

GIMIC of 1-Zn.

Supplementary Video 2

GIMIC of 1.

Supplementary Video 3

GIMIC of 1-Zn⁺.

Supplementary Video 4

GIMIC of 1⁺.

Supplementary Data 1

Crystal data for 3, CCDC 2407480.

Supplementary Data 2

Crystal data for 8, CCDC 2407483.

Supplementary Data 3

Crystal data for 1-Zn, CCDC 2407482.

Supplementary Data 4

Crystal data for 1, CCDC 2407481.

Supplementary Data 5

Crystal data for 1-Zn4+·(SbF6)4, CCDC 2407485.

Supplementary Data 6

Crystal data for 1-Zn4+·(SbCl6)4, CCDC 2407486.

Supplementary Data 7

Crystal data for OCT-1, CCDC 2407487.

Supplementary Data 8

Crystal data for 14+·(SbCl6)4, CCDC 2407488.

Supplementary Data 9

Crystal data for [OCT-2 + H]+·(SbF6), CCDC 2407489.

Supplementary Data 10

Crystal data for OCT-1·(SbF6), CCDC 2407490.

Supplementary Data 11

Crystal data for OCT-12+·(BF4)(Cl), CCDC 2407491.

Source data

Source Data Fig. 1

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sui, Y., Wang, Z., Hao, J. et al. Aromaticity and through-space electronic coupling in [2]catenanes comprising two intertwined globally electron-delocalized octaphyrinoid rings. Nat. Synth (2025). https://doi.org/10.1038/s44160-025-00918-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s44160-025-00918-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing