Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Pure-violet oxygen-doped carbon quantum rings with near-unity quantum yield and a full-width at half-maximum of 18 nm

Subjects

Abstract

High-colour-purity violet light-emitting diodes (LEDs) with colour coordinates close to the human visual threshold are essential for achieving wide-colour-gamut displays. However, it remains challenging for visible-light emitters to achieve both luminescence peaks shorter than 400 nm and a full-width at half-maximum (FWHM) below 20 nm due to irreducible π-conjugation length and strong vibrational relaxation in the excited state. Here this study introduces planar oxygen-doped carbon quantum rings (OD-CQRs) composed of twelve benzene rings and six embedded five-membered oxygen heterocycles. These OD-CQRs exhibit a fluorescence peak centre at 393 nm, a FWHM of 18 nm and a photoluminescence quantum yield of 95%. Detailed structural characterizations coupled with theoretical calculations reveal that the ring profile and alternatively embedded oxygen heterocycles in OD-CQRs effectively suppress π-electron delocalization and excited-state vibrational relaxation, due to non-bonding electron characteristics. The electroluminescent LEDs based on OD-CQRs demonstrate high-colour-purity violet emission with chromaticity coordinates of (0.161, 0.017), approaching the edge of the visible colour space.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Synthesis route, structural characterization and PL spectrum of OD-CQRs.
Fig. 2: Spectroscopic characterizations of OD-CQRs.
Fig. 3: Electronic properties of non-doped CQDs and OD-CQRs.
Fig. 4: Luminescence mechanism of non-doped CQDs and OD-CQRs.
Fig. 5: Electroluminescence characteristics of OD-CQR-based LED.

Data availability

The data supporting the findings of the current study are available within the Article and its Supplementary Information. Crystallographic data for the structure 2 reported in this Article have been deposited at the Cambridge Crystallographic Data Centre, under deposition number CCDC 2409067. Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/.

References

  1. García de Arquer, F. P. et al. Semiconductor quantum dots: technological progress and future challenges. Science 373, eaaz8541 (2021).

    Article  PubMed  Google Scholar 

  2. Long, Z. et al. A reactivity-controlled epitaxial growth strategy for synthesizing large nanocrystals. Nat. Synth. 2, 296 (2023).

    Article  CAS  Google Scholar 

  3. Zeng, X. et al. Orbital symmetry engineering in fused polycyclic heteroaromatics toward extremely narrowband green emissions with an FWHM of 13 nm. Adv. Mater. 35, 2211316 (2023).

    Article  CAS  Google Scholar 

  4. Wang, X. et al. A bright and stable violet carbon dot light-emitting diode. Adv. Opt. Mater. 8, 2000239 (2020).

    Article  CAS  Google Scholar 

  5. Lee, H. L., Chung, W. J. & Lee, J. Y. Narrowband and pure violet organic emitter with a full width at half maximum of 14 nm and y color coordinate of below 0.02. Small 16, e1907569 (2020).

    Article  PubMed  Google Scholar 

  6. Kim, T. et al. Efficient and stable blue quantum dot light-emitting diode. Nature 586, 385 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. Ma, P. et al. High-efficiency ultraviolet electroluminescence from multi-resonance phosphine oxide polycyclic aromatics. Angew. Chem. Int. Ed. 63, e202316479 (2023).

    Article  Google Scholar 

  8. Kondo, Y. et al. Narrowband deep-blue organic light-emitting diode featuring an organoboron-based emitter. Nat. Photonics 13, 678 (2019).

    Article  CAS  Google Scholar 

  9. Zhang, Y. et al. Multi-resonance induced thermally activated delayed fluorophores for narrowband green OLEDs. Angew. Chem. Int. Ed. 58, 16912 (2019).

    Article  CAS  Google Scholar 

  10. Fan, X.-C. et al. Ultrapure green organic light-emitting diodes based on highly distorted fused π-conjugated molecular design. Nat. Photonics 17, 280 (2023).

    Article  CAS  Google Scholar 

  11. Yang, M., Park, I. S. & Yasuda, T. Full-color, narrowband, and high-efficiency electroluminescence from boron and carbazole embedded polycyclic heteroaromatics. J. Am. Chem. Soc. 142, 19468 (2020).

    Article  CAS  PubMed  Google Scholar 

  12. Cheng, Y.-C. et al. Efficient, narrow-band, and stable electroluminescence from organoboron–nitrogen–carbonyl emitter. Nat. Commun. 15, 731 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Park, I. S., Yang, M., Shibata, H., Amanokura, N. & Yasuda, T. Achieving ultimate narrowband and ultrapure blue organic light-emitting diodes based on polycyclo-heteraborin multi-resonance delayed-fluorescence emitters. Adv. Mater. 34, 2107951 (2022).

    Article  CAS  Google Scholar 

  14. Zeng, X. et al. Nitrogen-embedded multi-resonance heteroaromatics with prolonged homogeneous hexatomic rings. Angew. Chem. Int. Ed. 61, e202117181 (2022).

    Article  CAS  Google Scholar 

  15. Wang, X., Duan, L. & Zhang, D. Indolocarbazole-based multiple-resonance molecules: an emerging class of full-color, narrowband emitters for organic light-emitting diodes. Chem. Eur. J. 29, e202300701 (2023).

    Article  CAS  PubMed  Google Scholar 

  16. Yuan, F. et al. Bright multicolor bandgap fluorescent carbon quantum dots for electroluminescent light-emitting diodes. Adv. Mater. 29, 1604436 (2017).

    Article  Google Scholar 

  17. Shi, Y. et al. Carbon dots for electroluminescent light-emitting diodes: recent progress and future prospects. Adv. Mater. 35, 2210699 (2023).

    Article  CAS  Google Scholar 

  18. Ethordevic, L., Arcudi, F., Cacioppo, M. & Prato, M. A multifunctional chemical toolbox to engineer carbon dots for biomedical and energy applications. Nat. Nanotechnol. 17, 112 (2022).

    Article  Google Scholar 

  19. Shi, Y. et al. Red phosphorescent carbon quantum dot organic framework-based electroluminescent light-emitting diodes exceeding 5% external quantum efficiency. J. Am. Chem. Soc. 143, 18941 (2021).

    Article  CAS  PubMed  Google Scholar 

  20. Chen, R. J. et al. Ultra-narrow-bandwidth deep-red electroluminescence based on green plant-derived carbon dots. Adv. Mater. 35, 2302275 (2023).

    Article  CAS  Google Scholar 

  21. Ai, L. et al. Solid-state fluorescence from carbon dots widely tunable from blue to deep red through surface ligand modulation. Angew. Chem. Int. Ed. 62, e202217822 (2023).

    Article  CAS  Google Scholar 

  22. Yuan, F. et al. Bright high-colour-purity deep-blue carbon dot light-emitting diodes via efficient edge amination. Nat. Photonics 14, 171 (2019).

    Article  Google Scholar 

  23. Zhang, X. et al. An undergraduate comprehensive experiment: simple and rapid synthesis of blue, green, and red fluorescent carbon quantum dots and light-emitting diode fabrication. J. Chem. Educ. 102, 1223 (2025).

    Article  CAS  Google Scholar 

  24. Yuan, T. et al. Carbon quantum dots with near-unity quantum yield bandgap emission for electroluminescent light-emitting diodes. Angew. Chem. Int. Ed. 62, e202218568 (2023).

    Article  CAS  Google Scholar 

  25. Yuan, F. et al. Engineering triangular carbon quantum dots with unprecedented narrow bandwidth emission for multicolored LEDs. Nat. Commun. 9, 2249 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Su, J. et al. Atomically precise bottom-up synthesis of π-extended [5] triangulene. Sci. Adv. 5, eaav7717 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jiao, T. et al. Synthesis of monolayer and persistent bilayer graphene fragments by using a radical-mediated coupling approach. Nat. Synth. 2, 1104 (2023).

    Article  CAS  Google Scholar 

  28. Fan, W. et al. Synthesis and chiral resolution of a triply twisted Möbius carbon nanobelt. Nat. Synth. 2, 880 (2023).

    Article  CAS  Google Scholar 

  29. Erdtman, H. & Hogbe, H. Tetranaphthocyclo-octatetraene tetra-oxide, a cyclisation product from α-naphthoquinone. Chem. Commun. 773 (1968).

  30. Fan, W. et al. Synthesis and chiral resolution of twisted carbon nanobelts. J. Am. Chem. Soc. 143, 15924 (2021).

    Article  CAS  PubMed  Google Scholar 

  31. Ni, Y. et al. 3D global aromaticity in a fully conjugated diradicaloid cage at different oxidation states. Nat. Chem. 12, 242 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. Ni, Y. et al. A chichibabin’s hydrocarbon-based molecular cage: the impact of structural rigidity on dynamics, stability, and electronic properties. J. Am. Chem. Soc. 142, 12730 (2020).

    Article  CAS  PubMed  Google Scholar 

  33. Song, S. et al. On-surface synthesis of graphene nanostructures with π-magnetism. Chem. Soc. Rev. 50, 3238 (2021).

    Article  CAS  PubMed  Google Scholar 

  34. Song, S. et al. Highly entangled polyradical nanographene with coexisting strong correlation and topological frustration. Nat. Chem. 16, 938 (2024).

    Article  CAS  PubMed  Google Scholar 

  35. Su, J. et al. On-Surface synthesis and characterization of [7] triangulene quantum ring. Nano Lett. 21, 861 (2020).

    Article  PubMed  Google Scholar 

  36. Lu, T. & Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580 (2011).

    Article  PubMed  Google Scholar 

  37. Frisch, M. J. et al. Gaussian 09, Revision C. 01, 201 (Gaussian, 2009).

  38. Kresse, G. & Furthmiiller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 6, 15 (1996).

    Article  CAS  Google Scholar 

  39. Zhang, Y. et al. Fusion of multi-resonance fragment with conventional polycyclic aromatic hydrocarbon for nearly BT.2020 green emission. Angew. Chem. Int. Ed. 61, e202202380 (2022).

    Article  CAS  Google Scholar 

  40. Zhang, Y. et al. Multi-resonance deep-red emitters with shallow potential-energy surfaces to surpass energy-gap law. Angew. Chem. Int. Ed. 60, 20498 (2021).

    Article  CAS  Google Scholar 

  41. Ru, Y. et al. Rational design of multicolor-emitting chiral carbonized polymer dots for full-color and white circularly polarized luminescence. Angew. Chem. Int. Ed. 60, 14091 (2021).

    Article  CAS  Google Scholar 

  42. Jiang, K. et al. Red, green, and blue luminescence by carbon dots: Full-color emission tuning and multicolor cellular imaging. Angew. Chem. Int. Ed. 54, 5360 (2015).

    Article  CAS  Google Scholar 

  43. Wang, B. et al. Rational design of multi-color-emissive carbon dots in a single reaction system by hydrothermal. Adv. Sci. 8, 2001453 (2020).

    Article  Google Scholar 

  44. Lu, S. et al. Graphitic nitrogen and high-crystalline triggered strong photoluminescence and room-temperature ferromagnetism in carbonized polymer dots. Adv. Sci. 6, 1801192 (2019).

    Article  Google Scholar 

  45. Yoshinaga, T. et al. Glycothermally synthesized carbon dots with narrow-bandwidth and color-tunable solvatochromic fluorescence for wide-color-gamut displays. ACS Omega 6, 1741 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (21872010, L.F., 22372009, Y.Z., and 22302012, F.Y.), the National Key Research and Development Program of China (2019YFE0112200, Z.T.), the National Key Research and Development Program of China (2023YFB3611800, F.Y.) and the National Science Fund for Excellent Young Scholars (Overseas, F.Y.).

Author information

Authors and Affiliations

Authors

Contributions

L.F., X.S., Y.Z., Z.T. and F.Y. designed the experiment. X.S., C.Z. and J.G. fabricated the samples for structural characterization. X.S., D.T. and L.S. performed the theoretical calculation and simulations. X.S., T.Y., T.M. and Y.S. fabricated the LED devices. X.S., Y.Z., T.Y., T.M., Y.S., X.L., Y.L., Z.T., F.Y. and L.F. analysed the data. X.S., Y.Z., Z.T., F.Y. and L.F. wrote the paper.

Corresponding authors

Correspondence to Yang Zhang, Zhan’ao Tan, Fanglong Yuan or Louzhen Fan.

Ethics declarations

Competing interests

The authors confirm no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Qing-Xiao Tong and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Peter Seavill, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

General methods, Supplementary Figs. 1–29 and Tables 1–15.

Supplementary Data 1

Crystallographic data.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, X., Zhang, C., Tang, D. et al. Pure-violet oxygen-doped carbon quantum rings with near-unity quantum yield and a full-width at half-maximum of 18 nm. Nat. Synth (2025). https://doi.org/10.1038/s44160-025-00922-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s44160-025-00922-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing