Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Divergent synthesis of N heterocycles from carbocycles enabled by electrochemical nitrogen atom insertion

Abstract

Skeletal editing via nitrogen atom insertion into cyclic frameworks is a non-conventional and powerful strategy for constructing functionalized N heterocycles—privileged scaffolds in both synthetic chemistry and pharmaceutical science. Despite their importance, general methods for the direct insertion of nitrogen into carbocycles, particularly saturated ones, remain limited due to the challenge of selectively activating of inert C–C bonds. Here we report an electrochemical platform that enables efficient nitrogen atom insertion into saturated carbocycles under mild conditions. Two distinct protocols have been developed, allowing access to either functionalized quinolines or N-alkylated saturated N heterocycles, both with excellent selectivity and broad functional group tolerance. Mechanistic studies reveal the involvement of benzylic carbocation and cyclic imine intermediates, which undergo divergent pathways to furnish structurally diverse products. This methodology for N heterocycle synthesis provides a robust route to bioactive scaffolds. The synthetic utility of the approach is highlighted by the synthesis of two ion-channel antagonists.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The importance of nitrogen atom insertion into carbocycles and related approaches.
Fig. 2: Reaction design and optimization for divergent electrochemical nitrogen atom insertion into saturated carbocycles.
Fig. 3: Electrochemical nitrogen atom insertion into indanes towards quinolines.
Fig. 4: Electrochemical nitrogen atom insertion into carbocycles towards alkylated N heterocycles.
Fig. 5: Synthetic applications of this divergent electrochemical nitrogen atom insertion method to provide two potential bioactive molecules.
Fig. 6: Mechanistic studies for divergent electrochemical nitrogen atom insertion of carbocycles.

Similar content being viewed by others

Data availability

All other experimental and characterization data are available in Supplementary Information. Crystallographic data are available free of charge from the Cambridge Crystallographic Data Centre under reference numbers CCDC 2405528 (35) and CCDC 2406850 (54). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures. Source data are provided with this paper.

References

  1. Muthukrishnan, I., Sridharan, V. & Menendez, J. C. Progress in the chemistry of tetrahydroquinolines. Chem. Rev. 119, 5057–5191 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. Elebiju, O. F., Ajani, O. O., Oduselu, G. O., Ogunnupebi, T. A. & Adebiyi, E. Recent advances in functionalized quinoline scaffolds and hybrids—exceptional pharmacophore in therapeutic medicine. Front. Chem. 10, 1074331 (2022).

    Article  CAS  PubMed  Google Scholar 

  3. Khadem, S. & Marles, R. J. Tetrahydroquinoline-containing natural products discovered within the last decade: occurrence and bioactivity. Nat. Prod. Res. 39, 182–194 (2025).

    Article  CAS  PubMed  Google Scholar 

  4. Ahmad, G. et al. N-heterocycles as promising antiviral agents: a comprehensive overview. Molecules 29, 2232 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kumar, D. & Jain, S. K. A comprehensive review of N-heterocycles as cytotoxic agents. Curr. Med. Chem. 23, 4338–4394 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Atukuri, D. et al. Contribution of N-heterocycles towards anti-tubercular drug discovery (2014-2019); predicted and reengineered molecular frameworks. Drug Dev. Res. 82, 767–783 (2021).

    Article  CAS  PubMed  Google Scholar 

  7. El-Sherief, H. A. M., Youssif, B. G. M., Bukhari, S. N. A., Abdel-Aziz, M. & Abdel-Rahman, H. M. Novel 1,2,4-triazole derivatives as potential anticancer agents: design, synthesis, molecular docking and mechanistic studies. Bioorg. Chem. 76, 314–325 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. Mermer, A. et al. Piperazine–azole–fluoroquinolone hybrids: conventional and microwave irradiated synthesis, biological activity screening and molecular docking studies. Bioorg. Chem. 85, 308–318 (2019).

    Article  CAS  PubMed  Google Scholar 

  9. Oniciuc, L. et al. Benzoquinoline derivatives: an attractive approach to newly small molecules with anticancer activity. Int. J. Mol. Sci. 24, 8124 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Joynson, B. W. & Ball, L. T. Skeletal editing: interconversion of arenes and heteroarenes. Helv. Chim. Acta 106, e202200182 (2023).

    Article  CAS  Google Scholar 

  11. Li, X., Xu, J. & Xu, Z. G. Precision single-atom editing: new frontiers in nitrogen insertion and substitution for the generation of N-heterocycles. Org. Chem. Front. 11, 4041–4053 (2024).

    Article  CAS  Google Scholar 

  12. Patel, C. K. et al. Skeletal editing through single-atom insertion and transmutation: an insight into a new era of synthetic organic chemistry. Synthesis 56, 3793–3814 (2024).

    Article  CAS  Google Scholar 

  13. Lu, H., Chang, J. & Wei, H. Transition metal-catalyzed nitrogen atom insertion into carbocycles. Acc. Chem. Res. 58, 933–946 (2025).

    Article  CAS  PubMed  Google Scholar 

  14. Cheng, Z., Hu, Z. & Jiao, N. Molecular ring remodeling through C–C bond cleavage. Acc. Chem. Res. 58, 1003–1022 (2025).

    Article  CAS  PubMed  Google Scholar 

  15. Reisenbauer, J. C., Green, O., Franchino, A., Finkelstein, P. & Morandi, B. Late-stage diversification of indole skeletons through nitrogen atom insertion. Science 377, 1104–1109 (2022).

    Article  CAS  PubMed  Google Scholar 

  16. Zhang, B.-S. et al. Electrochemical skeletal indole editing via nitrogen atom insertion by sustainable oxygen reduction reaction. Angew. Chem. Int. Ed. 63, e202407384 (2024).

    Article  CAS  Google Scholar 

  17. Reisenbauer, J. C. et al. Direct access to quinazolines and pyrimidines from unprotected indoles and pyrroles through nitrogen atom insertion. Org. Lett. 25, 8419–8423 (2023).

    Article  CAS  PubMed  Google Scholar 

  18. He, Y., Wang, J., Zhu, T., Zheng, Z. & Wei, H. Nitrogen atom insertion into arenols to access benzazepines. Chem. Sci. 15, 2612–2617 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kelly, P. Q., Filatov, A. S. & Levin, M. D. A synthetic cycle for heteroarene synthesis by nitride insertion. Angew. Chem. Int. Ed. 61, e202213041 (2022).

    Article  CAS  Google Scholar 

  20. Liu, S. & Cheng, X. Insertion of ammonia into alkenes to build aromatic N-heterocycles. Nat. Commun. 13, 425 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang, J., Lu, H., He, Y., Jing, C. & Wei, H. Cobalt-catalyzed nitrogen atom insertion in arylcycloalkenes. J. Am. Chem. Soc. 144, 22433–22439 (2022).

    Article  CAS  PubMed  Google Scholar 

  22. Wang, Z., Xu, H., Han, X., Fan, S. & Zhu, J. Manganese-catalyzed cycloalkene ring expansion synthesis of azaheterocycles. Org. Lett. 26, 8559–8564 (2024).

    Article  CAS  PubMed  Google Scholar 

  23. Jun, C. H. Transition metal-catalyzed carbon–carbon bond activation. Chem. Soc. Rev. 33, 610–618 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Liu, H., Feng, M. H. & Jiang, X. F. Unstrained carbon–carbon bond cleavage. Chem. Asian J. 9, 3360–3389 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Song, F. J., Gou, T., Wang, B. Q. & Shi, Z. J. Catalytic activations of unstrained C‒C bond involving organometallic intermediates. Chem. Soc. Rev. 47, 7078–7115 (2018).

    Article  CAS  PubMed  Google Scholar 

  26. Xia, Y. & Dong, G. B. Temporary or removable directing groups enable activation of unstrained C‒C bonds. Nat. Rev. Chem. 4, 600–614 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liang, Y. F. et al. Carbon–carbon bond cleavage for late-stage functionalization. Chem. Rev. 123, 12313–12370 (2023).

    Article  CAS  PubMed  Google Scholar 

  28. Zhang, Z., Li, Q., Cheng, Z., Jiao, N. & Zhang, C. Selective nitrogen insertion into aryl alkanes. Nat. Commun. 15, 6016 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Amber, C., Göttemann, L. T., Steele, R. T., Petitjean, T. M. & Sarpong, R. Reductive amination of carbonyl C–C bonds enables formal nitrogen insertion. J. Org. Chem. 89, 17655–17663 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yan, M., Kawamata, Y. & Baran, P. S. Synthetic organic electrochemical methods since 2000: on the verge of a renaissance. Chem. Rev. 117, 13230–13319 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Siu, J. C., Fu, N. & Lin, S. Catalyzing electrosynthesis: a homogeneous electrocatalytic approach to reaction discovery. Acc. Chem. Res. 53, 547–560 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Meyer, T. H., Choi, I., Tian, C. & Ackermann, L. Powering the future: how can electrochemistry make a difference in organic synthesis?. Chem 6, 2484–2496 (2020).

    Article  CAS  Google Scholar 

  33. Yuan, Y., Yang, J. & Lei, A. Recent advances in electrochemical oxidative cross-coupling with hydrogen evolution involving radicals. Chem. Soc. Rev. 50, 10058–10086 (2021).

    Article  CAS  PubMed  Google Scholar 

  34. Xiong, P. & Xu, H.-C. Chemistry with electrochemically generated N-centered radicals. Acc. Chem. Res. 52, 3339–3350 (2019).

    Article  CAS  PubMed  Google Scholar 

  35. Shi, S. H., Liang, Y. J. & Jiao, N. Electrochemical oxidation induced selective C‒C bond cleavage. Chem. Rev. 121, 485–505 (2021).

    Article  CAS  PubMed  Google Scholar 

  36. Huang, J. S., Jian, Y. M., Zhou, M. & Wu, H. G. Oxidative C‒C bond cleavage of lignin via electrocatalysis. Front. Chem. 10, 1007707 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hoffman, R. V. & Kumar, A. Cationic carbon-to-nitrogen rearrangements in N-(arylsulfonoxy)amines. J. Org. Chem. 50, 1859–1863 (1985).

    Article  CAS  Google Scholar 

  38. Wang, T. et al. Hydroxylamine-mediated C‒C amination via an aza-Hock rearrangement. Nat. Commun. 12, 7029 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Anugu, R. R. & Falck, J. R. Site-selective amination and/or nitrilation via metal-free C(sp2)‒C(sp3) cleavage of benzylic and allylic alcohols. Chem. Sci. 13, 4821–4827 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Niu, C. et al. Selective ring-opening amination of isochromans and tetrahydroisoquinolines. Angew. Chem. Int. Ed. 63, e202401318 (2024).

    Article  CAS  Google Scholar 

  41. Kumar, P., Divedi, A., Chandra, D., Ranjan De, S., & Jat, J. L. Hydroxylamine-O-sulfonic acid (HOSA): a recent synthetic overview. ChemistrySelect 9, e202401805 (2024).

    Article  CAS  Google Scholar 

  42. Kirste, A., Elsler, B., Schnakenburg, G. & Waldvogel, S. R. Efficient anodic and direct phenol-arene C,C cross-coupling: the benign role of water or methanol. J. Am. Chem. Soc. 134, 3571–3576 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Westaway, S. M. et al. N-Tetrahydroquinolinyl, N-quinolinyl and N-isoquinolinyl biaryl carboxamides as antagonists of TRPV1. Bioorg. Med. Chem. Lett. 16, 4533–4536 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Rami, H. K., Thompson, M., Macdonald, G. J., Westaway, S. M. & Mitchell, D. J. Vanillord receptor modulators. International patent WO 03/068749A1 (2003).

  45. Utley, J. H. P. & Rozenberg, G. G. Electroorganic reactions. Part 56: Anodic oxidation of 2-methyl- and 2-benzylnaphthalenes: factors influencing competing pathways. Tetrahedron 58, 5251–5265 (2002).

    Article  CAS  Google Scholar 

  46. Utley, J. H. P. & Rozenberg, G. G. Electroorganic reactions. Part 57. DDQ mediated anodic oxidation of 2-methyl- and 2-benzylnaphthalenes. J. Appl. Electrochem. 33, 525–532 (2003).

    Article  CAS  Google Scholar 

  47. Natori, I., Natori, S., Sekikawa, H. & Ogino, K. Effect of solvent on the dehydrogenation of poly(1,3-cyclohexadiene): formation and characteristics of benzoquinone–aromatic hydrocarbon charge-transfer complexes. J. Polym. Sci. Pol. Chem. 48, 342–350 (2010).

    Article  CAS  Google Scholar 

  48. Bosnidou, A. E. et al. Tandem InCl3-promoted hydroperoxide rearrangements and nucleophilic additions: a straightforward entry to benzoxacycles. J. Org. Chem. 88, 9277–9282 (2023).

    Article  CAS  PubMed  Google Scholar 

  49. Nobusue, S., Fujita, K. & Tobe, Y. Skeletal rearrangement of twisted polycyclic aromatic hydrocarbons under scholl reaction conditions. Org. Lett. 19, 3227–3230 (2017).

    Article  CAS  PubMed  Google Scholar 

  50. Kurimoto, Y., Yamashita, J., Mitsudo, K., Sato, E. & Suga, S. Electrosynthesis of phosphacycles via dehydrogenative C‒P bond formation using DABCO as a mediator. Org. Lett. 23, 3120–3124 (2021).

    Article  CAS  PubMed  Google Scholar 

  51. Tao, S. K. et al. Electrochemical cross-dehydrogenative aromatization protocol for the synthesis of aromatic amines. Org. Lett. 24, 1011–1016 (2022).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Ministry of Education of Singapore Academic Research Fund (tier 1: A-8001693-00-00 (M.J.K.) and A-8001040-00-00 (Y.Z.); tier 2: A-8001893-00-00 (Y.Z.)) and by National University of Singapore Foresight Grant: A-8002845-00-00, A-8002845-01-00 and A-8002845-02-00 (M.J.K.). I. I. Roslan assisted with X-ray crystallographic measurements.

Author information

Authors and Affiliations

Authors

Contributions

G.-Q.S., M.J.K. and Y.Z. conceived of the work. G.-Q.S., X.W., R.H. and W.R. conducted the optimization, reaction scope and mechanistic studies. M.J.K. and Y.Z. directed the research. All authors contributed to the writing of the paper.

Corresponding authors

Correspondence to Yu Zhao or Ming Joo Koh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Xu Cheng and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Stephanie Greed, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Experimental details, Supplementary sections 1–13, Figs. 1–15, Tables 1–4 and Scheme 1.

Supplementary Data 1

Raw NMR data for verifying the charge-transfer complex.

Supplementary Data 2

Original data for Supplementary Figs. 4–7.

Supplementary Data 3

Single-crystal X-ray diffraction data for compound 35 (CCDC 2405528).

Supplementary Data 4

Single-crystal X-ray diffraction data for compound 54 (CCDC 2406850).

Source data

Source Data Fig. 6

The raw data for cyclic voltammograms in Fig. 6a,b.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, GQ., Wang, X., Hu, R. et al. Divergent synthesis of N heterocycles from carbocycles enabled by electrochemical nitrogen atom insertion. Nat. Synth (2025). https://doi.org/10.1038/s44160-025-00945-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s44160-025-00945-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing