Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Artificial synthesis of carbohydrates from electrochemically fixed carbon dioxide

Abstract

Sustainable synthesis of C5+ carbohydrates from CO2 remains challenging due to the complexity of controlled CO2 reduction and carbon–carbon coupling. Biochemical approaches can convert primary CO2 reduction products into C5+ carbohydrates, but are often constrained by lengthy reaction periods, low production rates and system complexity. Here we present a two-step electrochemical reduction–formose reaction method that uses hydroxymethanesulfonate (HMS) as a more stable surrogate for formaldehyde to facilitate the direct synthesis of C5+ carbohydrates from electrochemically fixed CO2. Using cobalt tetraaminophthalocyanine molecules supported on multiwalled carbon nanotubes as an electrocatalyst, we achieve an HMS Faradaic efficiency of ~12% at a total current density of 150 mA cm−2. Employing direct CO reduction increases the Faradaic efficiency to ~25% with over 63% carbon efficiency. The produced HMS enables an efficient formose reaction under mild conditions reaching a yield of 20.4% for C5+ carbohydrates. The CO2-derived HMS also demonstrates its versatility as a formaldehyde surrogate in other reactions for synthesizing various valuable chemical products, promising a new approach for feeding advanced chemical synthesis with electrochemically fixed CO2 via the intercepted formaldehyde intermediate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Comparing different pathways from CO2 to carbohydrates.
Fig. 2: HMS production from CO2 or CO electroreduction in the presence of sulfite.
Fig. 3: Carbohydrate synthesis via the formose reaction of a 17.5 mM HMS solution from CO2 electrolysis.
Fig. 4: Extended application of HMS in various chemical syntheses.

Similar content being viewed by others

Data availability

All experimental data supporting the findings of this study are available in the Supplementary Information. Source data are provided with this paper.

References

  1. Crandall, B. S. et al. Transforming CO2 into advanced 3D printed carbon nanocomposites. Nat. Commun. 15, 10568 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Belsa, B. et al. Materials challenges on the path to gigatonne CO2 electrolysis. Nat. Rev. Mater. 9, 535–549 (2024).

    Article  CAS  Google Scholar 

  3. Sullivan, I. et al. Coupling electrochemical CO2 conversion with CO2 capture. Nat. Catal. 4, 952–958 (2022).

    Article  Google Scholar 

  4. Chen, Y. et al. Efficient multicarbon formation in acidic CO2 reduction via tandem electrocatalysis. Nat. Nanotechnol. 19, 311–318 (2024).

    Article  PubMed  CAS  Google Scholar 

  5. Barecka, M. H., Ds Dameni, P., Zakir Muhamad, M., Ager, J. W. & Lapkin, A. A. energy-efficient ethanol concentration method for scalable CO2 electrolysis. ACS Energy Lett. 8, 3214–3220 (2023).

    Article  CAS  Google Scholar 

  6. Wu, Y., Liang, Y. & Wang, H. Heterogeneous molecular catalysts of metal phthalocyanines for electrochemical CO2 reduction reactions. Acc. Chem. Res. 54, 3149–3159 (2021).

    Article  CAS  Google Scholar 

  7. Ulmer, U. et al. Fundamentals and applications of photocatalytic CO2 methanation. Nat. Commun. 10, 3169 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ma, H. et al. Direct electroreduction of carbonate to formate. J. Am. Chem. Soc. 145, 24707–24716 (2023).

    PubMed  PubMed Central  CAS  Google Scholar 

  9. Zhang, X. et al. Molecular engineering of dispersed nickel phthalocyanines on carbon nanotubes for selective CO2 reduction. Nat. Energy 5, 684–692 (2020).

    Article  CAS  Google Scholar 

  10. Zhan, C. et al. Key intermediates and Cu active sites for CO2 electroreduction to ethylene and ethanol. Nat. Energy 9, 1485–1496 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Soland, N. E., Roh, I., Huynh, W.-S. & Yang, P. Synthesis of carbohydrates from methanol using electrochemical partial oxidation over palladium with the integrated formose reaction. ACS Sustain. Chem. Eng. 11, 12478–12483 (2023).

    Article  CAS  Google Scholar 

  12. Ruiz-Mirazo, K., Briones, C. & de la Escosura, A. Prebiotic systems chemistry: new perspectives for the origins of life. Chem. Rev. 114, 285–366 (2014).

    Article  PubMed  CAS  Google Scholar 

  13. Hann, E. C. et al. A hybrid inorganic–biological artificial photosynthesis system for energy-efficient food production. Nat. Food 3, 461–471 (2022).

    Article  PubMed  CAS  Google Scholar 

  14. Liu, Z., Wang, K., Chen, Y., Tan, T. & Nielsen, J. Third-generation biorefineries as the means to produce fuels and chemicals from CO2. Nat. Catal. 3, 274–288 (2020).

    Article  CAS  Google Scholar 

  15. Cestellos-Blanco, S. et al. Toward abiotic sugar synthesis from CO2 electrolysis. Joule 6, 2304–2323 (2022).

    Article  CAS  Google Scholar 

  16. O’Brien, C. P., Watson, M. J. & Dowling, A. W. Challenges and opportunities in converting CO2 to carbohydrates. ACS Energy Lett. 7, 3509–3523 (2022).

    Article  Google Scholar 

  17. Liu, G. et al. Solar-driven sugar production directly from CO2 via a customizable electrocatalytic–biocatalytic flow system. Nat. Commun. 15, 2636 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Zheng, T. et al. Upcycling CO2 into energy-rich long-chain compounds via electrochemical and metabolic engineering. Nat. Catal. 5, 388–396 (2022).

    Article  CAS  Google Scholar 

  19. Cai, T. et al. Cell-free chemoenzymatic starch synthesis from carbon dioxide. Science 373, 1523–1527 (2021).

    Article  PubMed  CAS  Google Scholar 

  20. Robinson, W. E., Daines, E., van Duppen, P., de Jong, T. & Huck, W. T. S. Environmental conditions drive self-organization of reaction pathways in a prebiotic reaction network. Nat. Chem. 14, 623–631 (2022).

    Article  PubMed  CAS  Google Scholar 

  21. Bris, A. et al. Direct Analysis of complex reaction mixtures: formose reaction. Angew. Chem. Int. Ed. Engl. 63, e202316621 (2024).

    Article  PubMed  CAS  Google Scholar 

  22. Haynes, W. M. et al. (eds) CRC Handbook of Chemistry and Physics 95th edn (CRC, 2014).

  23. Li, J. et al. Mechanism-guided realization of selective carbon monoxide electroreduction to methanol. Nat. Synth. 2, 1194–1201 (2023).

    Article  CAS  Google Scholar 

  24. Wu, Y., Jiang, Z., Lu, X., Liang, Y. & Wang, H. Domino electroreduction of CO2 to methanol on a molecular catalyst. Nature 575, 639–642 (2019).

    Article  PubMed  CAS  Google Scholar 

  25. Wu, Y., Jiang, Z., Lin, Z., Liang, Y. & Wang, H. Direct electrosynthesis of methylamine from carbon dioxide and nitrate. Nat. Sustain. 4, 725–730 (2021).

    Article  Google Scholar 

  26. Singh, A. et al. Molecular electrochemical catalysis of CO-to-formaldehyde conversion with a cobalt complex. J. Am. Chem. Soc. 146, 22129–22133 (2024).

    Article  PubMed  CAS  Google Scholar 

  27. Chan, T. et al. Role of mass transport in electrochemical CO2 reduction to methanol using immobilized cobalt phthalocyanine. ACS Appl. Energy Mater. 7, 3091–3098 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Zhu, Q. S. et al. The solvation environment of molecularly dispersed cobalt phthalocyanine determines methanol selectivity during electrocatalytic CO reduction. Nat. Catal. 7, 987–999 (2024).

    Article  CAS  Google Scholar 

  29. Cheon, S., Li, J. & Wang, H. In situ generated CO enables high-current CO2 reduction to methanol in a molecular catalyst layer. J. Am. Chem. Soc. 146, 16348–16354 (2024).

    Article  PubMed  CAS  Google Scholar 

  30. Li, J., Al-Mahayni, H., Chartrand, D., Seifitokaldani, A. & Kornienko, N. Electrochemical formation of C–S bonds from CO2 and small-molecule sulfur species. Nat. Synth. 2, 757–765 (2023).

    Article  CAS  Google Scholar 

  31. Zhang, X. et al. Highly selective and active CO2 reduction electrocatalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures. Nat. Commun. 8, 14675 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kim, H. J. et al. Synthesis of carbohydrates in mineral-guided prebiotic cycles. J. Am. Chem. Soc. 133, 9457–9468 (2011).

    Article  PubMed  CAS  Google Scholar 

  33. Delidovich, I. V., Simonov, A. N., Taran, O. P. & Parmon, V. N. Catalytic formation of monosaccharides: from the formose reaction towards selective synthesis. ChemSusChem 7, 1833–1846 (2014).

    Article  PubMed  CAS  Google Scholar 

  34. Iqbal, Z. & Novalin, S. The formose reaction: a tool to produce synthetic carbohydrates within a regenerative life support system. Curr. Org. Chem. 16, 769–788 (2012).

    Article  CAS  Google Scholar 

  35. Omran, A., Menor-Salvan, C., Springsteen, G. & Pasek, M. The messy alkaline formose reaction and its link to metabolism. Life 10, 125 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Nielsen, S. S. in Food Analysis Laboratory Manual, Food Science Texts Series (ed. Nielsen, S. S.) 47–53 (Springer US, 2010).

  37. Iqbal, M. Z. & Novalin, S. Analysis of formose sugar and formaldehyde by high-performance liquid chromatography. J. Chromatogr. A 1216, 5116–5121 (2009).

    Article  PubMed  CAS  Google Scholar 

  38. Angyal, S. J. The Lobry de Bruyn-Alberda van Ekenstein transformation and related reactions. Top. Curr. Chem. 215, 1–14 (2001).

    Article  CAS  Google Scholar 

  39. Waki, M., Shirai, S. & Hase, Y. Saccharide formation by sustainable formose reaction using heterogeneous zeolite catalysts. Dalton Trans. 53, 2678–2686 (2024).

    Article  PubMed  CAS  Google Scholar 

  40. Yue, H. R., Zhao, Y. J., Ma, X. B. & Gong, J. L. Ethylene glycol: properties, synthesis, and applications. Chem. Soc. Rev. 41, 4218–4244 (2012).

    Article  PubMed  CAS  Google Scholar 

  41. Weinberg, N. L. & Mazur, D. J. Electrochemical hydrodimerization of formaldehyde to ethylene-glycol. J. Appl. Electrochem. 21, 895–901 (1991).

    Article  CAS  Google Scholar 

  42. Xia, R. et al. Electrosynthesis of ethylene glycol from C1 feedstocks in a flow electrolyzer. Nat. Commun. 14, 4570 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Li, R., Yang, D. J., Lou, H. M., Zhou, M. S. & Qiu, X. Q. Influence of sulfonated acetone-formaldehyde condensation used as dispersant on low rank coal-water slurry. Energy Convers. Manage. 64, 139–144 (2012).

    Article  CAS  Google Scholar 

  44. Li, Y. J. et al. The molecular structure and spectroscopic properties of formaldoxime (CH2NOH). Phys. Scr. 99, 055403 (2024).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Brown Investigator Award (H.W.) and US National Science Foundation (grant number CHE-2154724, H.W.). The flow cell work was supported by the Yale Center for Natural Carbon Capture (H.W.).

Author information

Authors and Affiliations

Authors

Contributions

J.L. and H.W. conceived this project and designed the experiments. J.L. and K.C. synthesized the catalyst materials, performed the TEA and LCA and conducted the electrochemical and chemical reactions. Y.S. assisted in some of these experiments. J.Y. carried out the post-reaction separation of carbohydrates. J.L., K.C. and H.W. wrote the manuscript with input from N.E.S. and P.Y. The manuscript was edited by Y.G. and S.C., who also contributed to data analysis. H.W. supervised the project.

Corresponding authors

Correspondence to Peidong Yang or Hailiang Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Rong Xia and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Alexandra Groves, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–16, Notes 1 and 2 and Tables 1–4.

Source data

Source Data Fig. 2

Electrochemical testing data.

Source Data Fig. 3

Formose reaction and TEA data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Chen, K., Soland, N.E. et al. Artificial synthesis of carbohydrates from electrochemically fixed carbon dioxide. Nat. Synth (2026). https://doi.org/10.1038/s44160-025-00961-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s44160-025-00961-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing