Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Matters Arising
  • Published:

Reply to: Stochastic virtual heart model predictions

The Original Article was published on 23 April 2025

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Distribution of scar/fat and border zones in 3D patient models and conduction velocities across model VT circuits.

Data availability

The original paper by Sung et al. provides a link to the repository of meshes and parameter files:

https://gitlab.com/natalia-trayanova/fat_infiltration_arrhythmias/-/tree/main?ref_type=heads

References

  1. Bishop, M. & Plank, G. Stochastic virtual heart model predictions. Nat. Cardiovasc. Res. https://doi.org/10.1038/s44161-025-00641-1 (2025).

    Article  PubMed  Google Scholar 

  2. Sung, E. et al. Fat infiltration in the infarcted heart as a paradigm for ventricular arrhythmias. Nat. Cardiovas. Res. 1, 933–945 (2022).

    Article  Google Scholar 

  3. Deng, D., Prakosa, A., Shade, J., Nikolov, P. & Trayanova, N. A. Characterizing conduction channels in postinfarction patients using a personalized virtual heart. Biophys. J. 117, 2287–2294 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Deng, D., Prakosa, A., Shade, J., Nikolov, P. & Trayanova, N. A. Sensitivity of ablation targets prediction to electrophysiological parameter variability in image-based computational models of ventricular tachycardia in post-infarction patients. Front. Physiol. 10, 628 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Prakosa, A. et al. Personalized virtual-heart technology for guiding the ablation of infarct-related ventricular tachycardia. Nat. Biomed. Eng. 2, 732–740 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Arevalo, H. J. et al. Arrhythmia risk stratification of patients after myocardial infarction using personalized heart models. Nat. Commun. 7, 11437 (2016).

  7. Sung, E. et al. Personalized digital-heart technology for ventricular tachycardia ablation targeting in hearts with infiltrating adiposity. Circ. Arrhythm. Electrophysiol. 13, E008912 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Anter, E. et al. Ablation of reentry-vulnerable zones determined by left ventricular activation from multiple directions: a novel approach for ventricular tachycardia ablation: a multicenter study (PHYSIO-VT). Circ. Arrhythm. Electrophysiol. 13, E008625 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chrispin, J. & Tandri, H. Association of sinus wavefront activation and ventricular extrastimuli mapping with ventricular tachycardia re-entrant circuits. JACC Clin. Electrophysiol. 9, 1697–1705 (2023).

    Article  PubMed  Google Scholar 

  10. Xu, L. et al. Lipomatous metaplasia enables ventricular tachycardia by reducing current loss within the protected corridor. JACC Clin. Electrophysiol. 8, 1274–1285 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Xu, L. et al. Conduction velocity dispersion predicts postinfarct ventricular tachycardia circuit sites and associates with lipomatous metaplasia. JACC Clin. Electrophysiol. 9, 1464–1474 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Xu, L. et al. Lipomatous metaplasia facilitates slow conduction in critical ventricular tachycardia corridors within postinfarct myocardium. JACC Clin. Electrophysiol. 9, 1235–1245 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Boyle, P. M., Ochs, A. R., Ali, R. L., Paliwal, N. & Trayanova, N. A. Characterizing the arrhythmogenic substrate in personalized models of atrial fibrillation: sensitivity to mesh resolution and pacing protocol in AF models. Europace 23, I3–I11 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Vigmond, E. J., Weber dos Santos, R., Prassl, A. J., Deo, M. & Plank, G. Solvers for the cardiac bidomain equations. Prog. Biophys. Mol. Biol. 96, 3–18 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Parollo, M. et al. Lipomatous metaplasia as the most reliable computed tomography predictor for functional substrate localization in scar-related ventricular tachycardia. Heart Rhythm 20, 1593–1594 (2023).

    Article  PubMed  Google Scholar 

  16. Kaboudian, A., Gray, R. A., Uzelac, I., Cherry, E. M. & Fenton, F. H. Fast interactive simulations of cardiac electrical activity in anatomically accurate heart structures by compressing sparse uniform cartesian grids. Comput. Methods Programs Biomed. 257, 108456 (2024).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

E.S., A.P. and N.T. wrote this response.

Corresponding author

Correspondence to Natalia Trayanova.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Cardiovascular Research thanks Blanca Rodriguez and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sung, E., Prakosa, A. & Trayanova, N. Reply to: Stochastic virtual heart model predictions. Nat Cardiovasc Res 4, 543–546 (2025). https://doi.org/10.1038/s44161-025-00642-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44161-025-00642-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing