Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Multimodal brain imaging of insomnia, depression and anxiety symptoms indicates transdiagnostic commonalities and differences

Abstract

Insomnia disorder, major depressive disorder and anxiety disorders are the most common mental health conditions, often co-occurring and sharing genetic risk factors, suggesting possible common brain mechanisms. Here we analyzed multimodal magnetic resonance imaging data from over 25,604 UK Biobank participants to identify shared versus symptom-specific brain features associated with symptom severity of these disorders. Smaller total cortical surface area, smaller thalamic volumes and weaker functional connectivity were linked to more severe symptoms of all three disorders. Disorder-specific symptom severity associations were also observed: smaller reward-related subcortical regions were associated with more severe insomnia symptoms; thinner cortices in language, reward and limbic regions with more severe depressive symptoms; and weaker amygdala reactivity and functional connectivity of dopamine-, glutamate- and histamine-enriched regions with more severe anxiety symptoms. These symptom-specific associations were often in parts of the amygdala–hippocampal–medial prefrontal circuit, highlighting the interconnectedness of these disorders and suggesting new pathways for research and treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Associations of brain morphology and severity of insomnia, depression and anxiety symptoms.
Fig. 2: Functional annotation of regional brain associations.
Fig. 3: Associations of structural and functional connectivity with symptom severity of insomnia, depression and anxiety.
Fig. 4: Summary of cross-modal findings.

Similar content being viewed by others

Data availability

The phenotype and MRI data from the UK Biobank that were used in this study are available upon application via UK Biobank at https://www.ukbiobank.ac.uk/register-apply. Cognitive–emotional annotations were obtained using data available via GitHub at https://github.com/ehbeam/neuro-knowledge-engine. Neurotransmission systems were derived from data available via GitHub at https://github.com/netneurolab/hansen_receptors.

Code availability

Structural and functional connectivity was reconstructed using CATO, whose source code is available via GitHub at https://github.com/dutchconnectomelab/CATO. Brain plots were visualized using the Simple Brain Plot toolbox65 available via GitHub at https://github.com/dutchconnectomelab/Simple-Brain-Plot. MATLAB code used in the statistical analyses is available via GitHub at https://github.com/Sleep-and-Cognition/multimodal-insomnia-depression-anxiety.

References

  1. Wittchen, H. U. et al. The size and burden of mental disorders and other disorders of the brain in Europe 2010. Eur. Neuropsychopharmacol. 21, 655–679 (2011).

    Article  PubMed  Google Scholar 

  2. van Someren, E. J. W. Brain mechanisms of insomnia: new perspectives on causes and consequences. Physiol. Rev. 101, 995–1046 (2021).

    Article  PubMed  Google Scholar 

  3. Cuijpers, P. The challenges of improving treatments for depression. JAMA 320, 2529–2530 (2018).

    Article  PubMed  Google Scholar 

  4. Tyrer, P. & Baldwin, D. Generalised anxiety disorder. Lancet 368, 2156–2166 (2006).

    Article  PubMed  Google Scholar 

  5. Schiel, J. E. et al. Associations between sleep health and grey matter volume in the UK Biobank cohort (n = 33 356). Brain Commun. 5, fcad200 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Schmaal, L. et al. Cortical abnormalities in adults and adolescents with major depression based on brain scans from 20 cohorts worldwide in the ENIGMA Major Depressive Disorder Working Group. Mol. Psychiatry 22, 900–909 (2017).

    Article  PubMed  Google Scholar 

  7. Harrewijn, A. et al. Cortical and subcortical brain structure in generalized anxiety disorder: findings from 28 research sites in the ENIGMA-Anxiety Working Group. Transl. Psychiatry 11, 502 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Jansen, P. R. et al. Genome-wide analysis of insomnia in 1,331,010 individuals identifies new risk loci and functional pathways. Nat. Genet. 51, 394–403 (2019).

    Article  PubMed  Google Scholar 

  9. Romero, C. et al. Exploring the genetic overlap between twelve psychiatric disorders. Nat. Genet. 54, 1795–1802 (2022).

    Article  PubMed  Google Scholar 

  10. Ohayon, M. M. & Roth, T. Place of chronic insomnia in the course of depressive and anxiety disorders. J. Psychiatr. Res. 37, 9–15 (2003).

    Article  PubMed  Google Scholar 

  11. Soehner, A. M. & Harvey, A. G. Prevalence and functional consequences of severe insomnia symptoms in mood and anxiety disorders: results from a nationally representative sample. Sleep 35, 1367–1375 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Serra-Blasco, M. et al. Structural brain correlates in major depression, anxiety disorders and post-traumatic stress disorder: a voxel-based morphometry meta-analysis. Neurosci. Biobehav. Rev. 129, 269–281 (2021).

    Article  PubMed  Google Scholar 

  13. Goodkind, M. et al. Identification of a common neurobiological substrate for mental illness. JAMA Psychiatry 72, 305–315 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Janiri, D. et al. Shared neural phenotypes for mood and anxiety disorders: a meta-analysis of 226 task-related functional imaging studies. JAMA Psychiatry 77, 172–179 (2020).

    Article  PubMed  Google Scholar 

  15. Abdelhack, M. et al. Opposing brain signatures of sleep in task-based and resting-state conditions. Nat. Commun. 14, 7927 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Leerssen, J. et al. Brain structural correlates of insomnia severity in 1053 individuals with major depressive disorder: results from the ENIGMA MDD Working Group. Transl. Psychiatry 10, 425 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Benson, K. L., Winkelman, J. W. & Gönenç, A. Disrupted white matter integrity in primary insomnia and major depressive disorder: relationships to sleep quality and depression severity. J. Sleep Res. 32, e13913 (2023).

    Article  PubMed  Google Scholar 

  18. Bresser, T. et al. The role of brain white matter in depression resilience and response to sleep interventions. Brain Commun. 5, fcad210 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Li, C. et al. Dynamic functional abnormalities in generalized anxiety disorders and their increased network segregation of a hyperarousal brain state modulated by insomnia. J. Affect. Disord. 246, 338–345 (2019).

    Article  PubMed  Google Scholar 

  20. Pace-Schott, E. F. et al. Resting state functional connectivity in primary insomnia, generalized anxiety disorder and controls. Psychiatry Res. Neuroimaging 265, 26–34 (2017).

    Article  PubMed  Google Scholar 

  21. Shen, Z. et al. Deficits in brain default mode network connectivity mediate the relationship between poor sleep quality and anxiety severity. Sleep 47, zsad296 (2023).

    Article  Google Scholar 

  22. Li, M. et al. Abnormalities of thalamus volume and resting state functional connectivity in primary insomnia patients. Brain Imaging Behav. 13, 1193–1201 (2019).

    Article  PubMed  Google Scholar 

  23. Nugent, A. C., Davis, R. M., Zarate, C. A. Jr & Drevets, W. C. Reduced thalamic volumes in major depressive disorder. Psychiatry Res. 213, 179–185 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  24. McCutcheon, R. A. et al. Shared and separate patterns in brain morphometry across transdiagnostic dimensions. Nat. Mental Health 1, 55–65 (2023).

    Article  Google Scholar 

  25. van Erp, T. G. et al. Subcortical brain volume abnormalities in 2028 individuals with schizophrenia and 2540 healthy controls via the ENIGMA consortium. Mol. Psychiatry 21, 547–553 (2016).

    Article  PubMed  Google Scholar 

  26. Hibar, D. P. et al. Subcortical volumetric abnormalities in bipolar disorder. Mol. Psychiatry 21, 1710–1716 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Stolicyn, A. et al. Comprehensive assessment of sleep duration, insomnia, and brain structure within the UK Biobank cohort. Sleep 47, zsad274 (2023).

    Article  PubMed Central  Google Scholar 

  28. Jespersen, K. V. et al. Reduced structural connectivity in insomnia disorder. J. Sleep Res. 29, e12901 (2020).

    Article  PubMed  Google Scholar 

  29. Tamm, S. et al. No association between amygdala responses to negative faces and depressive symptoms: cross-sectional data from 28,638 individuals in the UK Biobank cohort. Am. J. Psychiatry 179, 509–513 (2022).

    Article  PubMed  Google Scholar 

  30. Schiel, J. E. et al. Associations between sleep health and amygdala reactivity to negative facial expressions in the UK Biobank cohort. Biol. Psychiatry 92, 693–700 (2022).

    Article  PubMed  Google Scholar 

  31. Calhoun, V. D. & Sui, J. Multimodal fusion of brain imaging data: a key to finding the missing link(s) in complex mental illness. Biol. Psychiatry 1, 230–244 (2016).

    Google Scholar 

  32. McEwen, B. S., Nasca, C. & Gray, J. D. Stress effects on neuronal structure: hippocampus, amygdala, and prefrontal cortex. Neuropsychopharmacology 41, 3–23 (2016).

    Article  PubMed  Google Scholar 

  33. Genzel, L., Spoormaker, V. I., Konrad, B. N. & Dresler, M. The role of rapid eye movement sleep for amygdala-related memory processing. Neurobiol. Learn. Mem. 122, 110–121 (2015).

    Article  PubMed  Google Scholar 

  34. Wassing, R. et al. Restless REM sleep impedes overnight amygdala adaptation. Curr. Biol. 29, 2351–2358.e4 (2019).

    Article  PubMed  Google Scholar 

  35. Cabrera, Y. et al. Overnight neuronal plasticity and adaptation to emotional distress. Nat. Rev. Neurosci. 25, 253–271 (2024).

    Article  PubMed  Google Scholar 

  36. Marek, S. et al. Reproducible brain-wide association studies require thousands of individuals. Nature 603, 654–660 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Fry, A. et al. Comparison of sociodemographic and health-related characteristics of UK Biobank participants with those of the general population. Am. J. Epidemiol. 186, 1026–1034 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Nakua, H. et al. Systematic comparisons of different quality control approaches applied to three large pediatric neuroimaging datasets. NeuroImage 274, 120119 (2023).

    Article  PubMed  Google Scholar 

  39. Helwegen, K., Libedinsky, I. & van den Heuvel, M. P. Statistical power in network neuroscience. Trends Cogn. Sci. 27, 282–301 (2023).

    Article  PubMed  Google Scholar 

  40. Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Miller, K. L. et al. Multimodal population brain imaging in the UK Biobank prospective epidemiological study. Nat. Neurosci. 19, 1523–1536 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Smith, S. M., Alfaro-Almagro, F. & Miller, K. L. UK Biobank Brain Imaging Documentation (Oxford Centre for Functional MRI of the Brain (FMRIB/WIN), Oxford University on behalf of UK Biobank, accessed 30 January 2024); https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf.

  43. Fischl, B. FreeSurfer. NeuroImage 62, 774–781 (2012).

    Article  PubMed  Google Scholar 

  44. Desikan, R. S. et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage 31, 968–980 (2006).

    Article  PubMed  Google Scholar 

  45. de Lange, S. C., Helwegen, K. & van den Heuvel, M. P. Structural and functional connectivity reconstruction with CATO—a Connectivity Analysis TOolbox. NeuroImage 273, 120108 (2023).

    Article  PubMed  Google Scholar 

  46. Greve, D. N. & Fischl, B. Accurate and robust brain image alignment using boundary-based registration. NeuroImage 48, 63–72 (2009).

    Article  PubMed  Google Scholar 

  47. Chang, L. C., Walker, L. & Pierpaoli, C. Informed RESTORE: a method for robust estimation of diffusion tensor from low redundancy datasets in the presence of physiological noise artifacts. Magn. Reson. Med. 68, 1654–1663 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  48. de Reus, M. A. An Eccentric Perspective on Brain Networks (Uitgeverij BOXPress, 2015).

  49. Mori, S., Crain, B. J., Chacko, V. P. & van Zijl, P. C. M. Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann. Neurol. 45, 265–269 (1999).

    Article  PubMed  Google Scholar 

  50. Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L. & Petersen, S. E. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage 59, 2142–2154 (2012).

    Article  PubMed  Google Scholar 

  51. Hariri, A. R., Tessitore, A., Mattay, V. S., Fera, F. & Weinberger, D. R. The amygdala response to emotional stimuli: a comparison of faces and scenes. NeuroImage 17, 317–323 (2002).

    Article  PubMed  Google Scholar 

  52. Qian, Y. et al. Observational and genetic evidence highlight the association of human sleep behaviors with the incidence of fracture. Commun. Biol. 4, 1339 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Kroenke, K., Spitzer, R. L. & Williams, J. B. The Patient Health Questionnaire-2: validity of a two-item depression screener. Med. Care 41, 1284–1292 (2003).

    Article  PubMed  Google Scholar 

  54. Weiss, A. & Deary, I. J. A new look at neuroticism: should we worry so much about worrying? Curr. Dir. Psychol. Sci. 29, 92–101 (2020).

    Article  Google Scholar 

  55. Weiss, A. et al. Conditioning on a collider may or may not explain the relationship between lower neuroticism and premature mortality in the study by Gale et al. (2017): a reply to Richardson, Davey Smith, and Munafò (2019). Psychol. Sci. 30, 633–638 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Eysenck, S. B., Eysenck, H. J. & Barrett, P. A revised version of the psychoticism scale. Pers. Individ. Differ. 6, 21–29 (1985).

    Article  Google Scholar 

  57. Alfaro-Almagro, F. et al. Confound modelling in UK Biobank brain imaging. NeuroImage 224, 117002 (2021).

    Article  PubMed  Google Scholar 

  58. Nichols, T. E. & Holmes, A. P. Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum. Brain Mapp. 15, 1–25 (2002).

    Article  PubMed  Google Scholar 

  59. Winkler, A. M., Ridgway, G. R., Webster, M. A., Smith, S. M. & Nichols, T. E. Permutation inference for the general linear model. NeuroImage 92, 381–397 (2014).

    Article  PubMed  Google Scholar 

  60. Manly, B. F. Randomization, Bootstrap and Monte Carlo Methods in Biology (Chapman and Hall/CRC, 2007).

  61. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).

    Article  Google Scholar 

  62. Beam, E., Potts, C., Poldrack, R. A. & Etkin, A. A data-driven framework for mapping domains of human neurobiology. Nat. Neurosci. 24, 1733–1744 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Hansen, J. Y. et al. Mapping neurotransmitter systems to the structural and functional organization of the human neocortex. Nat. Neurosci. 25, 1569–1581 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Cammoun, L. et al. Mapping the human connectome at multiple scales with diffusion spectrum MRI. J. Neurosci. Methods 203, 386–397 (2012).

    Article  PubMed  Google Scholar 

  65. Scholtens, L. H., de Lange, S. C. & van den Heuvel, M. P. Simple brain plot (v1.0.0). Zenodo https://doi.org/10.5281/zenodo.5346593 (2021).

Download references

Acknowledgements

This work has received funding from ZonMw, the Hague, the Netherlands, project no. 09120011910032 REMOVE, the European Research Council (ERC), Brussels, Belgium, Advanced Grant 101055383 OVERNIGHT, and the Dutch Research Council (NWO), the Hague, the Netherlands, VENI 201G.064 (to J.E.S.); from the Dutch Research Council (NWO), the Hague, the Netherlands, VIDI 452-16-015 (to M.P.v.d.H.); and from the ERC under the European Union’s Horizon 2020 research and innovation program (grant agreement no. ERC CONNECT 101001062) (to M.P.v.d.H.). This work is co-funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Research Council Executive Agency. Neither the European Union nor the granting authority can be held responsible for them.

Author information

Authors and Affiliations

Authors

Contributions

S.C.d.L.: conceptualization; data curation; writing—original draft; formal analysis; methodology; writing—reviewing and editing. E.T.: data curation; methodology; writing—review and editing. T.B.: methodology; writing—review and editing. J.E.S.: data curation; methodology; writing—review and editing. D.P.: resources; methodology; writing—review and editing. M.P.v.d.H.: resources; methodology; writing—review and editing. E.J.W.v.S.: conceptualization; funding acquisition; methodology; writing—original draft; writing—reviewing and editing.

Corresponding author

Correspondence to Eus J. W. van Someren.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Mental Health thanks Julian Mutz, Edward Pace-Schott and Siyi Yu for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods, results, discussion, references, Figs. 1–14 and Tables 1–7.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Lange, S.C., Tissink, E., Bresser, T. et al. Multimodal brain imaging of insomnia, depression and anxiety symptoms indicates transdiagnostic commonalities and differences. Nat. Mental Health 3, 517–529 (2025). https://doi.org/10.1038/s44220-025-00412-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44220-025-00412-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing