Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Predictive processing accounts of psychosis: bottom-up or top-down disruptions

Abstract

Predictive processing has revolutionized cognitive neuroscience, offering a comprehensive computational framework for understanding normative behavior and psychiatric illness. This narrative Review evaluates the role of predictive processing in understanding psychosis, revisiting the seminal work of Sterzer and colleagues. It consolidates recent experimental evidence on the alteration of priors and sensory likelihoods across different stages of psychosis in an attempt to reconcile top-down (that is, overly precise priors/noisy sensations) and bottom-up (that is, noisy priors/overly precise sensations) accounts. It evaluates predictive processing alterations across the continuum of psychosis, from non-clinical psychotic experiences to high-risk and first-episode psychosis to schizophrenia, exploring the explanatory potential of predictive processing as a transdiagnostic framework. We discuss the translational potential of predictive processing, including its use as a biomarker and in therapeutic interventions. We emphasize the need for standardized paradigms and longitudinal studies to advance predictive processing theories in clinical practice. By offering a unified theoretical perspective, this Review aims to inspire further research into the neuro-computational mechanisms underlying psychosis and enhance our understanding of psychiatric disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Bayesian accounts for psychosis.
Fig. 2: Categorization of empirical studies in Table 1 as supporting top-down or bottom-up accounts.
Fig. 3: Categorization of studies as implicit or explicit and perceptual or cognitive across authors.

Similar content being viewed by others

References

  1. Velligan, D. I. & Rao, S. The epidemiology and global burden of schizophrenia. J. Clin. Psychiatry 84, MS21078COM5 (2023).

    Article  PubMed  Google Scholar 

  2. Millan, M. J. et al. Altering the course of schizophrenia: progress and perspectives. Nat. Rev. Drug Discov. 15, 485–515 (2016).

    Article  PubMed  Google Scholar 

  3. Charlson, F. J. et al. Global epidemiology and burden of schizophrenia: findings from the global burden of disease study 2016. Schizophr. Bull. 44, 1195 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  4. McCutcheon, R. A., Reis Marques, T. & Howes, O. D. Schizophrenia—an overview. JAMA Psychiatry 77, 201–210 (2020).

    Article  PubMed  Google Scholar 

  5. Friston, K. A theory of cortical responses. Philos. Trans. R. Soc. B 360, 815–836 (2005).

    Article  Google Scholar 

  6. Rao, R. P. N. & Ballard, D. H. Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat. Neurosci. 2, 79–87 (1999).

    Article  PubMed  Google Scholar 

  7. Corlett, P. R. et al. Hallucinations and strong priors. Trends Cogn. Sci. 23, 114–127 (2019).

    Article  PubMed  Google Scholar 

  8. Fletcher, P. C. & Frith, C. D. Perceiving is believing: a Bayesian approach to explaining the positive symptoms of schizophrenia. Nat. Rev. Neurosci. 10, 48–58 (2009).

    Article  PubMed  Google Scholar 

  9. Powers, A. et al. A computational account of the development and evolution of psychotic symptoms. Biol. Psychiatry 97, 117–127 (2024).

    Article  PubMed  Google Scholar 

  10. Sterzer, P. et al. The predictive coding account of psychosis. Biol. Psychiatry 84, 634–643 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Adams, R., Stephan, K., Brown, H., Frith, C. & Friston, K. The computational anatomy of psychosis. Front. Psychiatry 4, 47 (2013).

  12. Harding, J. N. et al. A new predictive coding model for a more comprehensive account of delusions. Lancet Psychiatry 11, 295–302 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Marr, D. Vision: A Computational Investigation into the Human Representation and Processing of Visual Information (MIT Press, 1982).

  14. Schmack, K. et al. Delusions and the role of beliefs in perceptual inference. J. Neurosci. 33, 13701–13712 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Schmack, K., Schnack, A., Priller, J. & Sterzer, P. Perceptual instability in schizophrenia: probing predictive coding accounts of delusions with ambiguous stimuli. Schizophr. Res. Cogn. 2, 72–77 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Stuke, H., Weilnhammer, V. A., Sterzer, P. & Schmack, K. Delusion proneness is linked to a reduced usage of prior beliefs in perceptual decisions. Schizophr. Bull. 45, 80–86 (2019).

    PubMed  Google Scholar 

  17. Teufel, C., Kingdon, A., Ingram, J. N., Wolpert, D. M. & Fletcher, P. C. Deficits in sensory prediction are related to delusional ideation in healthy individuals. Neuropsychologia 48, 4169–4172 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Weilnhammer, V. et al. Psychotic experiences in schizophrenia and sensitivity to sensory evidence. Schizophr. Bull. 46, 927–936 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Cassidy, C. M. et al. A perceptual inference mechanism for hallucinations linked to striatal dopamine. Curr. Biol. 28, 503–514 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Haarsma, J. et al. Influence of prior beliefs on perception in early psychosis: effects of illness stage and hierarchical level of belief. J. Abnorm. Psychol. 129, 581–598 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Powers, A., Mathys, C. & Corlett, P. R. Pavlovian conditioning—induced hallucinations result from overweighting of perceptual priors. Science 357, 596–600 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Stuke, H., Kress, E., Weilnhammer, V. A., Sterzer, P. & Schmack, K. Overly strong priors for socially meaningful visual signals are linked to psychosis proneness in healthy individuals. Front. Psychol. 12, 583637 (2021).

  23. Teufel, C. et al. Shift toward prior knowledge confers a perceptual advantage in early psychosis and psychosis-prone healthy individuals. Proc. Natl. Acad. Sci. USA 112, 13401–13406 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Corlett, P. R., Frith, C. D. & Fletcher, P. C. From drugs to deprivation: a Bayesian framework for understanding models of psychosis. Psychopharmacology 206, 515–530 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Notredame, C.-E., Pins, D., Deneve, S. & Jardri, R. What visual illusions teach us about schizophrenia. Front. Integr. Neurosci. 8, 63 (2014).

  26. Sterzer, P., Mishara, A. L., Voss, M. & Heinz, A. Thought insertion as a self-disturbance: an integration of predictive coding and phenomenological approaches. Front. Hum. Neurosci. 10, 502 (2016).

  27. Eckert, A.-L., Gounitski, Y., Guggenmos, M. & Sterzer, P. Cross-modality evidence for reduced choice history biases in psychosis-prone individuals. Schizophr. Bull. 49, 397–406 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Jardri, R. et al. Are hallucinations due to an imbalance between excitatory and inhibitory influences on the brain? Schizophr. Bull. 42, 1124–1134 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Schmack, K., Bosc, M., Sturgill, J., Ott, T. & Kepecs, A. Hallucination-like perception in mice provides neural-circuit insights into dopamine hypothesis of psychosis. Biol. Psychiatry 89, S44 (2021).

    Article  Google Scholar 

  30. Heinz, A. & Schlagenhauf, F. Dopaminergic dysfunction in schizophrenia: salience attribution revisited. Schizophr. Bull. 36, 472–485 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Corlett, P. R. & Fletcher, P. C. Delusions and prediction error: clarifying the roles of behavioural and brain responses. Cogn. Neuropsychiatry 20, 95–105 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Guloksuz, S. & van Os, J. The slow death of the concept of schizophrenia and the painful birth of the psychosis spectrum. Psychol. Med. 48, 229–244 (2018).

    Article  PubMed  Google Scholar 

  33. Kapur, S. Psychosis as a state of aberrant salience: a framework linking biology, phenomenology, and pharmacology in schizophrenia. Am. J. Psychiatry 160, 13–23 (2003).

    Article  PubMed  Google Scholar 

  34. Deserno, L. et al. Volatility estimates increase choice switching and relate to prefrontal activity in schizophrenia. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 5, 173–183 (2020).

    PubMed  Google Scholar 

  35. Howes, O. D. et al. Dopaminergic function in the psychosis spectrum: an [18F]-DOPA imaging study in healthy individuals with auditory hallucinations. Schizophr. Bull. 39, 807–814 (2013).

    Article  PubMed  Google Scholar 

  36. Davies, D. J., Teufel, C. & Fletcher, P. C. Anomalous perceptions and beliefs are associated with shifts toward different types of prior knowledge in perceptual inference. Schizophr. Bull. 44, 1245–1253 (2018).

    Article  PubMed  Google Scholar 

  37. Mourgues-Codern, C. et al. Emergence and dynamics of delusions and hallucinations across stages in early psychosis. Biol. Psychiatry 98, 679–688 (2025).

    Article  PubMed  Google Scholar 

  38. Sterzer, P., Voss, M., Schlagenhauf, F. & Heinz, A. Decision-making in schizophrenia: a predictive-coding perspective. NeuroImage 190, 133–143 (2019).

    Article  PubMed  Google Scholar 

  39. Javitt, D. C. Glutamatergic theories of schizophrenia. Isr. J. Psychiatry Relat. Sci. 47, 4–16 (2010).

    PubMed  Google Scholar 

  40. Javitt, D. C. & Freedman, R. Sensory processing dysfunction in the personal experience and neuronal machinery of schizophrenia. Am. J. Psychiatry 172, 17–31 (2015).

    Article  PubMed  Google Scholar 

  41. Demler, V. F., Sterner, E. F., Wilson, M., Zimmer, C. & Knolle, F. Association between increased anterior cingulate glutamate and psychotic-like experiences, but not autistic traits in healthy volunteers. Sci. Rep. 13, 12792 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Merritt, K., Egerton, A., Kempton, M. J., Taylor, M. J. & McGuire, P. K. Nature of glutamate alterations in schizophrenia: a meta-analysis of proton magnetic resonance spectroscopy studies. JAMA Psychiatry 73, 665–674 (2016).

    Article  PubMed  Google Scholar 

  43. Knolle, F., Sterner, E. F., Demler, V. F., MacGregor, L. J. & Mathys, C. Guided by expectations: overweighted semantic priors in schizotypy and their links to glutamate. Biol. Psychiatry https://doi.org/10.1016/j.biopsych.2025.06.025 (2025).

  44. Rushworth, M. F. S. & Behrens, T. E. J. Choice, uncertainty and value in prefrontal and cingulate cortex. Nat. Neurosci. 11, 389–397 (2008).

    Article  PubMed  Google Scholar 

  45. Adams, R., Brown, H. R. & Friston, K. J. Bayesian inference, predictive coding and delusions. AVANT V, 51–88 (2014).

    Article  Google Scholar 

  46. Jardri, R. & Denève, S. Circular inferences in schizophrenia. Brain 136, 3227–3241 (2013).

    Article  PubMed  Google Scholar 

  47. Javitt, D. C. When doors of perception close: bottom-up models of disrupted cognition in schizophrenia. Annu. Rev. Clin. Psychol. 5, 249–275 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Stephan, K. E., Friston, K. J. & Frith, C. D. Dysconnection in schizophrenia: from abnormal synaptic plasticity to failures of self-monitoring. Schizophr. Bull. 35, 509–527 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Ranson, A. et al. Top-down suppression of sensory cortex in an NMDAR hypofunction model of psychosis. Schizophr. Bull. 45, 1349–1357 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Schmack, K., Bosc, M., Ott, T., Sturgill, J. F. & Kepecs, A. Striatal dopamine mediates hallucination-like perception in mice. Science 372, eabf4740 (2021).

    Article  PubMed  Google Scholar 

  51. Schmidt, A. et al. Modeling ketamine effects on synaptic plasticity during the mismatch negativity. Cereb. Cortex 23, 2394–2406 (2013).

    Article  PubMed  Google Scholar 

  52. Weber, L. A. et al. Ketamine affects prediction errors about statistical regularities: a computational single-trial analysis of the mismatch negativity. J. Neurosci. 40, 5658–5668 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Glausier, J. R. & Lewis, D. A. Dendritic spine pathology in schizophrenia. Neuroscience 251, 90–107 (2013).

    Article  PubMed  Google Scholar 

  54. Corlett, P. R., Honey, G. D. & Fletcher, P. C. Prediction error, ketamine and psychosis: an updated model. J. Psychopharmacol. 30, 1145–1155 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Kafadar, E. et al. Modeling perception and behavior in individuals at clinical high risk for psychosis: support for the predictive processing framework. Schizophr. Res. 226, 167–175 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Leptourgos, P. et al. Relating glutamate, conditioned, and clinical hallucinations via 1H-MR spectroscopy. Schizophr. Bull. 48, 912–920 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Benrimoh, D. et al. Evidence for reduced sensory precision and increased reliance on priors in hallucination-prone individuals in a general population sample. Schizophr. Bull. 50, 349–362 (2024).

    Article  PubMed  Google Scholar 

  58. Kafadar, E. et al. Conditioned hallucinations and prior over-weighting are state sensitive markers of hallucination susceptibility. Biol. Psychiatry 92, 772–780 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Altamura, M. et al. Are all forms of feature binding disturbed in schizophrenia? Evidence from a central vs. peripheral distinction in working memory. Psychiatry Res. 209, 9–14 (2013).

    Article  PubMed  Google Scholar 

  60. Chhabra, S., Badcock, J. C., Maybery, M. T. & Leung, D. Context binding and hallucination predisposition: evidence of intact intentional and automatic integration of external features. Pers. Individ. Differ. 50, 834–839 (2011).

    Article  Google Scholar 

  61. Kang, S. S., MacDonald, A. W. & Sponheim, S. R. Dysfunctional neural processes underlying context processing deficits in schizophrenia. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 4, 644–654 (2019).

    PubMed  PubMed Central  Google Scholar 

  62. Waters, F. A. V., Maybery, M. T., Badcock, J. C. & Michie, P. T. Context memory and binding in schizophrenia. Schizophr. Res. 68, 119–125 (2004).

    Article  PubMed  Google Scholar 

  63. Alderson-Day, B. et al. Distinct processing of ambiguous speech in people with non-clinical auditory verbal hallucinations. Brain 140, 2475–2489 (2017).

    Article  PubMed  Google Scholar 

  64. Schmack, K., Rothkirch, M., Priller, J. & Sterzer, P. Enhanced predictive signalling in schizophrenia. Hum. Brain Mapp. 38, 1767–1779 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Javitt, D. C. Sensory processing in schizophrenia: neither simple nor intact. Schizophr. Bull. 35, 1059–1064 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Karvelis, P., Seitz, A. R., Lawrie, S. M. & Seriès, P. Autistic traits, but not schizotypy, predict increased weighting of sensory information in Bayesian visual integration. eLife 7, e34115 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Bévalot, C. & Meyniel, F. A dissociation between the use of implicit and explicit priors in perceptual inference. Commun. Psychol. 2, 111 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Dzafic, I. et al. Stronger top-down and weaker bottom-up frontotemporal connections during sensory learning are associated with severity of psychotic phenomena. Schizophr. Bull. 47, 1039–1047 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Daalman, K. & Diederen, K. M. A final common pathway to hearing voices: examining differences and similarities in clinical and non-clinical individuals. Psychosis 5, 236–246 (2013).

    Article  Google Scholar 

  70. Gold, J. M. et al. Phenomenological and cognitive features associated with auditory hallucinations in clinical and nonclinical voice hearers. Schizophr. Bull. 49, 1591–1601 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Goodwin, I., Kugel, J., Hester, R. & Garrido, M. I. Bayesian accounts of perceptual decisions in the nonclinical continuum of psychosis: greater imprecision in both top-down and bottom-up processes. PLOS Comput. Biol. 19, e1011670 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Foussias, G. & Remington, G. Negative symptoms in schizophrenia: avolition and Occam’s razor. Schizophr. Bull. 36, 359–369 (2010).

    Article  PubMed  Google Scholar 

  73. Blanchard, J. J. & Cohen, A. S. The structure of negative symptoms within schizophrenia: implications for assessment. Schizophr. Bull. 32, 238–245 (2006).

    Article  PubMed  Google Scholar 

  74. Fervaha, G., Foussias, G., Agid, O. & Remington, G. Amotivation and functional outcomes in early schizophrenia. Psychiatry Res. 210, 665–668 (2013).

    Article  PubMed  Google Scholar 

  75. Krause, M. et al. Antipsychotic drugs for patients with schizophrenia and predominant or prominent negative symptoms: a systematic review and meta-analysis. Eur. Arch. Psychiatry Clin. Neurosci. 268, 625–639 (2018).

    Article  PubMed  Google Scholar 

  76. Foussias, G., Agid, O., Fervaha, G. & Remington, G. Negative symptoms of schizophrenia: clinical features, relevance to real world functioning and specificity versus other CNS disorders. Eur. Neuropsychopharmacol. 24, 693–709 (2014).

    Article  PubMed  Google Scholar 

  77. Messinger, J. W. et al. Avolition and expressive deficits capture negative symptom phenomenology: implications for DSM-5 and schizophrenia research. Clin. Psychol. Rev. 31, 161–168 (2011).

    Article  PubMed  Google Scholar 

  78. Chan, R. C. K., Wang, L. & Lui, S. S. Y. Theories and models of negative symptoms in schizophrenia and clinical implications. Nat. Rev. Psychol. 1, 454–467 (2022).

    Article  Google Scholar 

  79. Bliksted, V. et al. Hyper- and hypomentalizing in patients with first-episode schizophrenia: fMRI and behavioral studies. Schizophr. Bull. 45, 377–385 (2019).

    Article  PubMed  Google Scholar 

  80. Jeganathan, J. & Breakspear, M. An active inference perspective on the negative symptoms of schizophrenia. Lancet Psychiatry 8, 732–738 (2021).

    Article  PubMed  Google Scholar 

  81. Kahnt, T., Heinzle, J., Park, S. Q. & Haynes, J.-D. The neural code of reward anticipation in human orbitofrontal cortex. Proc. Natl. Acad. Sci. USA 107, 6010–6015 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Chan, R. C. K. et al. Anticipatory and consummatory components of the experience of pleasure in schizophrenia: cross-cultural validation and extension. Psychiatry Res. 175, 181–183 (2010).

    Article  PubMed  Google Scholar 

  83. Edwards, C. J., Cella, M., Tarrier, N. & Wykes, T. Predicting the future in schizophrenia: the discrepancy between anticipatory and consummatory pleasure. Psychiatry Res. 229, 462–469 (2015).

    Article  PubMed  Google Scholar 

  84. Gard, D. E., Kring, A. M., Gard, M. G., Horan, W. P. & Green, M. F. Anhedonia in schizophrenia: distinctions between anticipatory and consummatory pleasure. Schizophr. Res. 93, 253–260 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Cassidy, C. M., Lepage, M., Harvey, P.-O. & Malla, A. Cannabis use and anticipatory pleasure as reported by subjects with early psychosis and community controls. Schizophr. Res. 137, 39–44 (2012).

    Article  PubMed  Google Scholar 

  86. Da Silva, S. et al. Investigating consummatory and anticipatory pleasure across motivation deficits in schizophrenia and healthy controls. Psychiatry Res. 254, 112–117 (2017).

    Article  PubMed  Google Scholar 

  87. Strauss, G. P., Wilbur, R. C., Warren, K. R., August, S. M. & Gold, J. M. Anticipatory vs. consummatory pleasure: what is the nature of hedonic deficits in schizophrenia? Psychiatry Res. 187, 36–41 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Strauss, G. P. & Gold, J. M. A new perspective on anhedonia in schizophrenia. Am. J. Psychiatry 169, 364–373 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Juckel, G. et al. Dysfunction of ventral striatal reward prediction in schizophrenic patients treated with typical, not atypical, neuroleptics. Psychopharmacology 187, 222–228 (2006).

    Article  PubMed  Google Scholar 

  90. Juckel, G. et al. Dysfunction of ventral striatal reward prediction in schizophrenia. NeuroImage 29, 409–416 (2006).

    Article  PubMed  Google Scholar 

  91. Nielsen, M. Ø. et al. Alterations of the brain reward system in antipsychotic naïve schizophrenia patients. Biol. Psychiatry 71, 898–905 (2012).

    Article  PubMed  Google Scholar 

  92. Radua, J. et al. Ventral striatal activation during reward processing in psychosis: a neurofunctional meta-analysis. JAMA Psychiatry 72, 1243–1251 (2015).

    Article  PubMed  Google Scholar 

  93. Schlagenhauf, F. et al. Reward system activation in schizophrenic patients switched from typical neuroleptics to olanzapine. Psychopharmacology 196, 673–684 (2008).

    Article  PubMed  Google Scholar 

  94. Waltz, J. A. The neural underpinnings of cognitive flexibility and their disruption in psychotic illness. Neuroscience 345, 203–217 (2017).

    Article  PubMed  Google Scholar 

  95. Kesby, J. P., Murray, G. K. & Knolle, F. Neural circuitry of salience and reward processing in psychosis. Biol. Psychiatry Glob. Open Sci. 3, 33–46 (2023).

    Article  PubMed  Google Scholar 

  96. Gradin, V. B. et al. Expected value and prediction error abnormalities in depression and schizophrenia. Brain J. Neurol. 134, 1751–1764 (2011).

    Article  Google Scholar 

  97. Murray, G. K. et al. Substantia nigra/ventral tegmental reward prediction error disruption in psychosis. Mol. Psychiatry 13, 267–276 (2008).

    Article  Google Scholar 

  98. Waltz, J. A. et al. Patients with schizophrenia have a reduced neural response to both unpredictable and predictable primary reinforcers. Neuropsychopharmacology 34, 1567–1577 (2008).

    Article  PubMed  Google Scholar 

  99. Ermakova, A. O. et al. Abnormal reward prediction-error signalling in antipsychotic naive individuals with first-episode psychosis or clinical risk for psychosis. Neuropsychopharmacology 43, 1691–1699 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Montagnese, M. et al. Reinforcement learning as an intermediate phenotype in psychosis? Deficits sensitive to illness stage but not associated with polygenic risk of schizophrenia in the general population. Schizophr. Res. 222, 389–396 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Pelizza, L. & Ferrari, A. Anhedonia in schizophrenia and major depression: state or trait? Ann. Gen. Psychiatry 8, 22 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Dunlop, B. W. & Nemeroff, C. B. The role of dopamine in the pathophysiology of depression. Arch. Gen. Psychiatry 64, 327–337 (2007).

    Article  PubMed  Google Scholar 

  103. McCabe, C., Mishor, Z., Cowen, P. J. & Harmer, C. J. Diminished neural processing of aversive and rewarding stimuli during selective serotonin reuptake inhibitor treatment. Biol. Psychiatry 67, 439–445 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Ubl, B. et al. Altered neural reward and loss processing and prediction error signalling in depression. Soc. Cogn. Affect. Neurosci. 10, 1102–1112 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Halahakoon, D. C. et al. Reward-processing behavior in depressed participants relative to healthy volunteers: a systematic review and meta-analysis. JAMA Psychiatry 77, 1286–1295 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Treadway, M. T. & Zald, D. H. Reconsidering anhedonia in depression: lessons from translational neuroscience. Neurosci. Biobehav. Rev. 35, 537–555 (2011).

    Article  PubMed  Google Scholar 

  107. Vrieze, E. et al. Reduced reward learning predicts outcome in major depressive disorder. Biol. Psychiatry 73, 639–645 (2013).

    Article  PubMed  Google Scholar 

  108. Dev, A. S., Arditte Hall, K. A. & Timpano, K. R. The relationship between psychiatric symptoms and affective forecasting bias. J. Behav. Ther. Exp. Psychiatry 79, 101825 (2023).

    Article  PubMed  Google Scholar 

  109. Thompson, R. et al. Positive and negative affective forecasting in remitted individuals with bipolar I disorder, and major depressive disorder, and healthy controls. Cogn. Ther. Res. 41, 673–685 (2017).

  110. Wenze, S. J., Gunthert, K. C. & German, R. E. Biases in affective forecasting and recall in individuals with depression and anxiety symptoms. Pers. Soc. Psychol. Bull. 38, 895–906 (2012).

    Article  PubMed  Google Scholar 

  111. Liang, S., Wu, Y., Hanxiaoran, L., Greenshaw, A. J. & Li, T. Anhedonia in depression and schizophrenia: brain reward and aversion circuits. Neuropsychiatr. Dis. Treat. 18, 1385–1396 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Keren, H. et al. Reward processing in depression: a conceptual and meta-analytic review across fMRI and EEG studies. Am. J. Psychiatry 175, 1111–1120 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Ng, T. H., Alloy, L. B. & Smith, D. V. Meta-analysis of reward processing in major depressive disorder reveals distinct abnormalities within the reward circuit. Transl. Psychiatry 9, 293 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Zhang, B. et al. Mapping anhedonia-specific dysfunction in a transdiagnostic approach: an ALE meta-analysis. Brain Imaging Behav. 10, 920–939 (2016).

    Article  PubMed  Google Scholar 

  115. Leroy, A. et al. Reward anticipation in schizophrenia: a coordinate-based meta-analysis. Schizophr. Res. 218, 2–6 (2020).

    Article  PubMed  Google Scholar 

  116. McCabe, C. Neural signals of ‘intensity’ but not ‘wanting’ or ‘liking’ of rewards may be trait markers for depression. J. Psychopharmacol. 30, 1020–1027 (2016).

    Article  PubMed  Google Scholar 

  117. Knolle, F. et al. Investigating disorder-specific and transdiagnostic alterations in model-based and model-free decision-making. J. Psychiatry Neurosci. 49, E389–E401 (2024).

    Article  PubMed Central  Google Scholar 

  118. Banaraki, A. K., Toghi, A. & Mohammadzadeh, A. RDoC framework through the lens of predictive processing: focusing on cognitive systems domain. Comput. Psychiatry 8, 178–201 (2024).

    Article  Google Scholar 

  119. Seth, A. K. Interoceptive inference, emotion, and the embodied self. Trends Cogn. Sci. 17, 565–573 (2013).

    Article  PubMed  Google Scholar 

  120. Yao, B. & Thakkar, K. Interoception abnormalities in schizophrenia: a review of preliminary evidence and an integration with Bayesian accounts of psychosis. Neurosci. Biobehav. Rev. 132, 757–773 (2022).

    Article  PubMed  Google Scholar 

  121. Ainley, V., Apps, M. A. J., Fotopoulou, A. & Tsakiris, M. ‘Bodily precision’: a predictive coding account of individual differences in interoceptive accuracy. Philos. Trans. R. Soc. B 371, 20160003 (2016).

    Article  Google Scholar 

  122. Poletti, M., Tortorella, A. & Raballo, A. Impaired corollary discharge in psychosis and at-risk states: integrating neurodevelopmental, phenomenological, and clinical perspectives. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 4, 832–841 (2019).

    PubMed  Google Scholar 

  123. Shergill, S. S., Samson, G., Bays, P. M., Frith, C. D. & Wolpert, D. M. Evidence for sensory prediction deficits in schizophrenia. Am. J. Psychiatry 162, 2384–2386 (2005).

    Article  PubMed  Google Scholar 

  124. Martinelli, C., Rigoli, F. & Shergill, S. S. Aberrant force processing in schizophrenia. Schizophr. Bull. 43, 417–424 (2017).

    PubMed  Google Scholar 

  125. Wilquin, H. & Delevoye-Turrell, Y. Motor agency: a new and highly sensitive measure to reveal agency disturbances in early psychosis. PLoS ONE 7, e30449 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Thakkar, K. N., Schall, J. D., Logan, G. D. & Park, S. Response inhibition and response monitoring in a saccadic double-step task in schizophrenia. Brain Cogn. 95, 90–98 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Ford, J. M., Roach, B. J., Faustman, W. O. & Mathalon, D. H. Synch before you speak: auditory hallucinations in schizophrenia. Am. J. Psychiatry 164, 458–466 (2007).

    Article  PubMed  Google Scholar 

  128. Ford, J. M. Studying auditory verbal hallucinations using the RDoC framework. Psychophysiology 53, 298–304 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Sheffield, J. M., Brinen, A. P., Feola, B., Heckers, S. & Corlett, P. R. Understanding cognitive behavioral therapy for psychosis through the predictive coding framework. Biol. Psychiatry Glob. Open Sci. 4, 100333 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Smith, R., Badcock, P. & Friston, K. J. Recent advances in the application of predictive coding and active inference models within clinical neuroscience. Psychiatry Clin. Neurosci. 75, 3–13 (2021).

    Article  PubMed  Google Scholar 

  131. Miyake, N., Thompson, J., Skinbjerg, M. & Abi-Dargham, A. Presynaptic dopamine in schizophrenia. CNS Neurosci. Ther. 17, 104–109 (2011).

    Article  PubMed  Google Scholar 

  132. Morrison, A. P. & Barratt, S. What are the components of CBT for psychosis? A Delphi study. Schizophr. Bull. 36, 136–142 (2010).

    Article  PubMed  Google Scholar 

  133. Moritz, S. & Woodward, T. S. Metacognitive training in schizophrenia: from basic research to knowledge translation and intervention. Curr. Opin. Psychiatry 20, 619 (2007).

    Article  PubMed  Google Scholar 

  134. Pell, G. S., Roth, Y. & Zangen, A. Modulation of cortical excitability induced by repetitive transcranial magnetic stimulation: influence of timing and geometrical parameters and underlying mechanisms. Prog. Neurobiol. 93, 59–98 (2011).

    Article  PubMed  Google Scholar 

  135. Fiszdon, J. M., Choi, K. H., Bell, M. D., Choi, J. & Silverstein, S. M. Cognitive remediation for individuals with psychosis: efficacy and mechanisms of treatment effects. Psychol. Med. 46, 3275–3289 (2016).

    Article  PubMed  Google Scholar 

  136. Laukkonen, R. E. & Slagter, H. A. From many to (n)one: meditation and the plasticity of the predictive mind. Neurosci. Biobehav. Rev. 128, 199–217 (2021).

    Article  PubMed  Google Scholar 

  137. Fong, C. Y., Law, W. H. C., Uka, T. & Koike, S. Auditory mismatch negativity under predictive coding framework and its role in psychotic disorders. Front. Psychiatry 11, 557932 (2020).

  138. Kirihara, K. et al. A predictive coding perspective on mismatch negativity impairment in schizophrenia. Front. Psychiatry 11, 660 (2020).

  139. Donaldson, K. R. et al. Mismatch negativity and clinical trajectories in psychotic disorders: five-year stability and predictive utility. Psychol. Med. 53, 5818–5828 (2023).

    Article  PubMed  Google Scholar 

  140. Kafadar, E. et al. Conditioned hallucinations and prior overweighting are state-sensitive markers of hallucination susceptibility. Biol. Psychiatry 15, 772–780 (2022).

    Article  Google Scholar 

  141. Fryer, S. L. et al. Deficits in auditory predictive coding in individuals with the psychosis risk syndrome: prediction of conversion to psychosis. J. Abnorm. Psychol. 129, 599–611 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Hauke, D. J. Aberrant hierarchical prediction errors are associated with transition to psychosis: a computational single-trial analysis of the mismatch negativity. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 8, 1176–1185 (2023).

    PubMed  Google Scholar 

  143. Knolle, F. et al. Action selection in early stages of psychosis: an active inference approach. J. Psychiatry Neurosci. 48, E78–E89 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Vilares, I. & Kording, K. P. Dopaminergic medication increases reliance on current information in Parkinson’s disease. Nat. Hum. Behav. 1, 0129 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Fusar-Poli, P. et al. Prevention of psychosis: advances in detection, prognosis, and intervention. JAMA Psychiatry 77, 755–765 (2020).

    Article  PubMed  Google Scholar 

  146. Suvisaari, J. et al. Is it possible to predict the future in first-episode psychosis? Front. Psychiatry 9, 580 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Fišar, Z. Biological hypotheses, risk factors, and biomarkers of schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry 120, 110626 (2023).

    Article  PubMed  Google Scholar 

  148. Kraguljac, N. V. et al. Neuroimaging biomarkers in schizophrenia. Am. J. Psychiatry 178, 509–521 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Lin, P. et al. Consensus on potential biomarkers developed for use in clinical tests for schizophrenia. Gen. Psychiatry 35, e100685 (2022).

    Article  Google Scholar 

  150. Gillan, C. M. & Daw, N. D. Taking psychiatry research online. Neuron 91, 19–23 (2016).

    Article  PubMed  Google Scholar 

  151. Casaletto, K. B. & Heaton, R. K. Neuropsychological assessment: past and future. J. Int. Neuropsychol. Soc. 23, 778–790 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Goodwin, I., Hester, R. & Garrido, M. I. Temporal stability of Bayesian belief updating in perceptual decision-making. Behav. Res. Methods 56, 6349–6362 (2024).

    Article  PubMed  Google Scholar 

  153. Pálffy, Z., Farkas, K., Csukly, G., Kéri, S. & Polner, B. Cross-modal auditory priors drive the perception of bistable visual stimuli with reliable differences between individuals. Sci. Rep. 11, 16943 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  154. McGorry, P. D. et al. Spurious precision: procedural validity of diagnostic assessment in psychotic disorders. Am. J. Psychiatry 152, 220–223 (1995).

    Article  PubMed  Google Scholar 

  155. Matuszak, J. & Piasecki, M. Inter-rater reliability in psychiatric diagnosis. Psychiatr. Times 29, 12–13 (2012).

    Google Scholar 

  156. Gibbs-Dean, T. et al. Belief updating in psychosis, depression and anxiety disorders: a systematic review across computational modelling approaches. Neurosci. Biobehav. Rev. 147, 105087 (2023).

    Article  PubMed  Google Scholar 

  157. Wilson, R. C. & Collins, A. G. Ten simple rules for the computational modeling of behavioral data. eLife 8, e49547 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Button, K. S. et al. Power failure: why small sample size undermines the reliability of neuroscience. Nat. Rev. Neurosci. 14, 365–376 (2013).

    Article  PubMed  Google Scholar 

  159. Haarsma, J. et al. Precision weighting of cortical unsigned prediction error signals benefits learning, is mediated by dopamine, and is impaired in psychosis. Mol. Psychiatry 26, 5320–5333 (2021).

    Article  PubMed  Google Scholar 

  160. Hauke, D. J. et al. Altered perception of environmental volatility during social learning in emerging psychosis. Comput. Psychiatry 8, 1–22 (2024).

    Article  Google Scholar 

  161. Lalousis, P. A. et al. Heterogeneity and classification of recent onset psychosis and depression: a multimodal machine learning approach. Schizophr. Bull. 47, 1130–1140 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Taylor, J. A., Larsen, K. M. & Garrido, M. I. Multi-dimensional predictions of psychotic symptoms via machine learning. Hum. Brain Mapp. 41, 5151–5163 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Kahneman, D. Experiences of collaborative research. Am. Psychol. 58, 723–730 (2003).

    Article  PubMed  Google Scholar 

  164. Olcese, U. et al. Accelerating research on consciousness: an adversarial collaboration to test contrasting predictions of the integrated information theory and predictive processing accounts of consciousness—version 2. OSF https://doi.org/10.17605/OSF.IO/4RN85 (2024).

  165. Cleeremans, A. Theory as adversarial collaboration. Nat. Hum. Behav. 6, 485–486 (2022).

    Article  PubMed  Google Scholar 

  166. Melloni, L. et al. An adversarial collaboration protocol for testing contrasting predictions of global neuronal workspace and integrated information theory. PLoS ONE 18, e0268577 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Yaron, I., Melloni, L., Pitts, M. & Mudrik, L. The ConTraSt database for analysing and comparing empirical studies of consciousness theories. Nat. Hum. Behav. 6, 593–604 (2022).

    Article  PubMed  Google Scholar 

  168. Mathys, C. D. et al. Uncertainty in perception and the Hierarchical Gaussian Filter. Front. Hum. Neurosci. 8, 825 (2014).

  169. Katthagen, T., Fromm, S., Wieland, L. & Schlagenhauf, F. Models of dynamic belief updating in psychosis—a review across different computational approaches. Front. Psychiatry 13, 814111 (2022).

  170. Weber, L. A. et al. The generalized Hierarchical Gaussian Filter. Preprint at https://doi.org/10.48550/arXiv.2305.10937 (2024).

  171. Marek, S. et al. Reproducible brain-wide association studies require thousands of individuals. Nature 603, 654–660 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Markiewicz, C. J. et al. The OpenNeuro resource for sharing of neuroscience data. eLife 10, e71774 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Rahnev, D. et al. The Confidence Database. Nat. Hum. Behav. 4, 317–325 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  174. The International Brain Laboratory et al. Standardized and reproducible measurement of decision-making in mice. eLife 10, e63711 (2021).

    Article  Google Scholar 

  175. Nassar, M. R., Waltz, J. A., Albrecht, M. A., Gold, J. M. & Frank, M. J. All or nothing belief updating in patients with schizophrenia reduces precision and flexibility of beliefs. Brain 144, 1013–1029 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Baker, S. C., Konova, A. B., Daw, N. D. & Horga, G. A distinct inferential mechanism for delusions in schizophrenia. Brain 142, 1797–1812 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Reed, E. J. et al. Paranoia as a deficit in non-social belief updating. eLife 9, e56345 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Limongi, R., Bohaterewicz, B., Nowicka, M., Plewka, A. & Friston, K. J. Knowing when to stop: aberrant precision and evidence accumulation in schizophrenia. Schizophr. Res. 197, 386–391 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Kaliuzhna, M. et al. No evidence for abnormal priors in early vision in schizophrenia. Schizophr. Res. 210, 245–254 (2019).

    Article  PubMed  Google Scholar 

  180. van Leeuwen, T. M. et al. Perceptual gains and losses in synesthesia and schizophrenia. Schizophr. Bull. 47, 722–730 (2021).

    Article  PubMed  Google Scholar 

  181. Bansal, S. et al. Association between failures in perceptual updating and the severity of psychosis in schizophrenia. JAMA Psychiatry 79, 169–177 (2022).

    Article  PubMed  Google Scholar 

  182. Scheliga, S., Schwank, R., Scholle, R., Habel, U. & Kellermann, T. A neural mechanism underlying predictive visual motion processing in patients with schizophrenia. Psychiatry Res. 318, 114934 (2022).

    Article  PubMed  Google Scholar 

  183. Larsen, K. M. et al. Aberrant connectivity in auditory precision encoding in schizophrenia spectrum disorder and across the continuum of psychotic-like experiences. Schizophr. Res. 222, 185–194 (2020).

    Article  PubMed  Google Scholar 

  184. Simonsen, A. et al. Taking others into account: combining directly experienced and indirect information in schizophrenia. Brain J. Neurol. 144, 1603–1614 (2021).

    Article  Google Scholar 

  185. Alamia, A. et al. Oscillatory traveling waves provide evidence for predictive coding abnormalities in schizophrenia. Biol. Psychiatry 98, 167–174 (2025).

    Article  PubMed  Google Scholar 

  186. Castiello, S. et al. Delusional unreality and predictive processing. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 10, 709–717 (2025).

    PubMed  Google Scholar 

  187. Kowalski, J. et al. Associations of cognitive expectancies with auditory hallucinations and hallucinatory-like experiences in patients with schizophrenia. Schizophr. Bull. 51, 780–791 (2025).

    Article  PubMed  Google Scholar 

  188. Fromm, S. P. et al. Neural correlates of uncertainty processing in psychosis spectrum disorder. Brain Commun. 7, fcaf073 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Cole, D. M. et al. Atypical processing of uncertainty in individuals at risk for psychosis. NeuroImage Clin. 26, 102239 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Silverstein, S. M. et al. Increased face detection responses on the mooney faces test in people at clinical high risk for psychosis. npj Schizophr. 7, 26 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Charlton, C. E. et al. Atypical prediction error learning is associated with prodromal symptoms in individuals at clinical high risk for psychosis. Schizophrenia 8, 105 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Rossi-Goldthorpe, R. et al. Different learning aberrations relate to delusion-like beliefs with different contents. Brain 147, 2854–2866 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Tran, T. et al. Increased face perception in individuals at clinical high-risk for psychosis: mechanisms, sex differences, and clinical correlates. Schizophrenia 11, 74 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Dzafic, I., Randeniya, R., Harris, C. D., Bammel, M. & Garrido, M. I. Statistical learning and inference is impaired in the nonclinical continuum of psychosis. J. Neurosci. 40, 6759–6769 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Kreis, I. et al. Aberrant uncertainty processing is linked to psychotic-like experiences, autistic traits, and is reflected in pupil dilation during probabilistic learning. Cogn. Affect. Behav. Neurosci. 23, 905–919 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Suthaharan, P. et al. Paranoia and belief updating during the COVID-19 crisis. Nat. Hum. Behav. 5, 1190–1202 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Haarsma, J., Deveci, N., Corbin, N., Callaghan, M. F. & Kok, P. Expectation cues and false percepts generate stimulus-specific activity in distinct layers of the early visual cortex. J. Neurosci. 43, 7946–7957 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Seymour, K., Sterzer, P. & Soto, N. Believing is seeing: the link between paranormal beliefs and perceiving signal in noise. Conscious. Cogn. 106, 103418 (2022).

    Article  PubMed  Google Scholar 

  199. Alderson-Day, B. et al. Susceptibility to auditory hallucinations is associated with spontaneous but not directed modulation of top-down expectations for speech. Neurosci. Conscious. 2022, niac002 (2022).

  200. Lhotka, M., Ischebeck, A., Helmlinger, B. & Zaretskaya, N. No common factor for illusory percepts, but a link between pareidolia and delusion tendency: a test of predictive coding theory. Front. Psychol. 13, 1067985 (2023).

  201. Tarasi, L., Martelli, M. E., Bortoletto, M., di Pellegrino, G. & Romei, V. Neural signatures of predictive strategies track individuals along the autism–schizophrenia continuum. Schizophr. Bull. 49, 1294–1304 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Bott, A., Steer, H. C., Faße, J. L. & Lincoln, T. M. Visualizing threat and trustworthiness prior beliefs in face perception in high versus low paranoia. Schizophrenia 10, 40 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Mazer, P. et al. How distinct autism and schizotypal trait dimensions influence neural predictive processing: an event-related potential study. Brain Cogn. 188, 106329 (2025).

    Article  PubMed  Google Scholar 

  204. Bartels-Velthuis, A. A., Willige, G., van de, Jenner, J. A. & Wiersma, D. Consistency and reliability of the auditory vocal hallucination rating scale (AVHRS). Epidemiol. Psychiatr. Sci. 21, 305–310 (2012).

    Article  PubMed  Google Scholar 

  205. Faustman, W. O. & Overall, J. E. in The Use of Psychological Testing for Treatment Planning and Outcomes Assessment (ed. Maruish, M. E.) 2nd edn 791–830 (Lawrence Erlbaum, 1999).

  206. Yung, A. R. et al. Mapping the onset of psychosis: the comprehensive assessment of at-risk mental states. Aust. N. Z. J. Psychiatry 39, 964–971 (2005).

    Article  PubMed  Google Scholar 

  207. Konings, M., Bak, M., Hanssen, M., Van Os, J. & Krabbendam, L. Validity and reliability of the CAPE: a self-report instrument for the measurement of psychotic experiences in the general population. Acta Psychiatr. Scand. 114, 55–61 (2006).

    Article  PubMed  Google Scholar 

  208. Bell, V., Halligan, P. W. & Ellis, H. D. The Cardiff Anomalous Perceptions Scale (CAPS): a new validated measure of anomalous perceptual experience. Schizophr. Bull. 32, 366–377 (2006).

    Article  PubMed  Google Scholar 

  209. Kern, B., Axelrod, J., Gao, Y. & Keedy, S. Exchange the magnifying glass for a microscope: the Chicago Hallucination Assessment Tool (CHAT). Schizophr. Bull. 41, S110 (2015).

    Google Scholar 

  210. Launay, G. & Slade, P. Launay–Slade Hallucination Scale. APA PsycNet https://doi.org/10.1037/t13160-000 (1981).

  211. McGlashan, T. H., Miller, T. J., Woods, S. W., Hoffman, R. E., Davidson, L. in Early Intervention in Psychotic Disorders. NATO Science Series (eds Miller, T. et al.) Vol. 91, 135–149 (Springer, 2001).

  212. Kay, S. R., Fiszbein, A. & Opler, L. A. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr. Bull. 13, 261–276 (1987).

    Article  PubMed  Google Scholar 

  213. Peters, E. R., Joseph, S. A. & Garety, P. A. Measurement of delusional ideation in the normal population: introducing the PDI (Peters et al. delusions inventory). Schizophr. Bull. 25, 553–576 (1999).

    Article  PubMed  Google Scholar 

  214. Loewy, R. L., Bearden, C. E., Johnson, J. K., Raine, A. & Cannon, T. D. The prodromal questionnaire (PQ): preliminary validation of a self-report screening measure for prodromal and psychotic syndromes. Schizophr. Res. 79, 117–125 (2005).

    Article  PubMed  Google Scholar 

  215. Kline, E. et al. Psychosis risk screening in youth: a validation study of three self-report measures of attenuated psychosis symptoms. Schizophr. Res. 141, 72–77 (2012).

    Article  PubMed  Google Scholar 

  216. Freeman, D. et al. The revised Green et al., paranoid thoughts scale (R-GPTS): psychometric properties, severity ranges, and clinical cut-offs. Psychol. Med. 51, 244–253 (2021).

    Article  PubMed  Google Scholar 

  217. Morrison, A. P., Wells, A. & Nothard, S. Cognitive and emotional predictors of predisposition to hallucinations in non-patients. Br. J. Clin. Psychol. 41, 259–270 (2002).

    Article  PubMed  Google Scholar 

  218. Rust, J. The Rust inventory of schizotypal cognitions (RISC). Schizophr. Bull. 14, 317–322 (1988).

    Article  PubMed  Google Scholar 

  219. Shankman, S. A. et al. Reliability and validity of severity dimensions of psychopathology assessed using the Structured Clinical Interview for DSM-5 (SCID). Int. J. Methods Psychiatr. Res. 27, e1590 (2018).

    Article  PubMed  Google Scholar 

  220. McGlashan, T. H., Walsh, B. & Woods, S. The Psychosis-Risk Syndrome: Handbook for Diagnosis and Follow-Up (Oxford Univ. Press, 2010).

  221. Raine, A. The SPQ: a scale for the assessment of schizotypal personality based on DSM-III-R criteria. Schizophr. Bull. 17, 555–564 (1991).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

I.G., K.M.J.D., E.J.H., V.W., M.I.G. and F.K. contributed to the conceptualization of the structure and content of the manuscript, contributed written sections and reviewed all sections. M.I.G. created Fig. 1. F.K. created Fig. 3, and I.G. created Fig. 2 and Tables 1, 2.

Corresponding author

Correspondence to Marta I. Garrido.

Ethics declarations

Competing interests

The authors report no competing interests.

Peer review

Peer review information

Nature Mental Health thanks Tyrone Cannon, Andrea Raballo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goodwin, I., Diederen, K.M.J., Hird, E.J. et al. Predictive processing accounts of psychosis: bottom-up or top-down disruptions. Nat. Mental Health 4, 60–84 (2026). https://doi.org/10.1038/s44220-025-00558-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44220-025-00558-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing