Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Depression shapes the recall of adverse childhood experiences: evidence from a three-wave longitudinal study of 6,260 Chinese adolescents

This article has been updated

Abstract

Depression is a major mental health concern among adolescents, and adverse childhood experiences (ACEs) are known risk factors. However, how depression affects the recall of ACEs remains unclear. Using three waves of data from 6,260 Chinese adolescents in the Developmental & Emotional Pathways in Transition to Adulthood Study, we examine the bidirectional relationship between depression and ACE recall. Depression was assessed with the Beck Depression Inventory-II and ACEs with an adapted ACE scale, controlling for sociodemographic factors. Random intercept cross-lagged panel model analyses show that, within individuals, baseline depressive symptoms predict increased subsequent recall of ACEs, whereas ACE recall did not predict later depression. Cross-lagged panel network analysis identified punishment feelings, fatigue and emotional neglect as key nodes linking depression and ACE recall. These findings indicate that depression can reshape autobiographical memory of adversity, probably via negative emotional processing and memory bias. This highlights the need to account for depression-driven distortions when assessing trauma history, and suggests that alleviating depressive symptoms may reduce trauma-related distress.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Final model of RI-CLPM.
Fig. 2: CLPNs and bridge expected influence.
Fig. 3: Outgoing and ingoing expected influence of networks.
Fig. 4: Data selection process and participant characteristics across waves.

Similar content being viewed by others

Data availability

The data supporting the main findings of this study are available from the corresponding author upon reasonable request, subject to compliance with the laws of the People’s Republic of China and approval from the Human Research Ethics Committees of South China Normal University. The data are not publicly available owing to their sensitive nature and the potential for identification, which could compromise research participant privacy.

Code availability

The R code used for data processing and statistical analyses in this study has been deposited in Zenodo and is publicly available for replication purposes (https://doi.org/10.5281/zenodo.17649422)95. No custom algorithms were developed, and all analyses were conducted using standard functions from publicly available R packages.

Change history

  • 21 January 2026

    In the version of the article initially published, in the Acknowledgements section, the last digit was inadvertently omitted from the Research Center for Brain Cognition and Human Development, Guangdong, China grant no. 2024B0303390003 which has now been corrected in the HTML and PDF versions of the article.

References

  1. Shorey, S., Ng, E. D. & Wong, C. H. J. Global prevalence of depression and elevated depressive symptoms among adolescents: a systematic review and meta-analysis. Br. J. Clin. Psychol. 61, 287–305 (2022).

    Article  PubMed  Google Scholar 

  2. Racine, N. et al. Global prevalence of depressive and anxiety symptoms in children and adolescents during COVID-19: a meta-analysis. JAMA Pediatr. 175, 1142–1150 (2021).

    Article  PubMed  Google Scholar 

  3. Hua, Z., Wang, S. & Yuan, X. Trends in age-standardized incidence rates of depression in adolescents aged 10–24 in 204 countries and regions from 1990 to 2019. J. Affect. Disord. 350, 831–837 (2024).

    Article  PubMed  Google Scholar 

  4. Akee, R., Copeland, W. & Simeonova, E. Child mental health, family circumstance, and long-term success: the effect of household income. J. Hum. Resour. 59, S77–S107 (2024).

    Article  Google Scholar 

  5. Okońska, A. et al. Risk factors for depression in adolescents. Qual. Sport 39, 58314 (2025).

    Article  Google Scholar 

  6. Zhou, X. & Zhen, R. How do physical and emotional abuse affect depression and problematic behaviors in adolescents? The roles of emotional regulation and anger. Child Abuse Negl. 129, 105641 (2022).

    Article  PubMed  Google Scholar 

  7. Li, S., Zhao, F. & Yu, G. Childhood emotional abuse and depression among adolescents: roles of deviant peer affiliation and gender. J. Interpers. Violence 37, NP830–NP850 (2022).

    Article  PubMed  Google Scholar 

  8. Kobrinsky, V. & Siedlecki, K. L. Mediators of the relationship between adverse childhood experiences (ACEs) and symptoms of anxiety, depression, and suicidality among adults. J. Child Adolesc. Trauma 16, 233–246 (2023).

    Article  PubMed  Google Scholar 

  9. Yang, J. Z. et al. Effect of adverse childhood experiences on hypothalamic-pituitary-adrenal (HPA) axis function and antidepressant efficacy in untreated first episode patients with major depressive disorder. Psychoneuroendocrinology 134, 105432 (2021).

    Article  PubMed  Google Scholar 

  10. Vyas, N. et al. Systematic review and meta-analysis of the effect of adverse childhood experiences (ACEs) on brain-derived neurotrophic factor (BDNF) levels. Psychoneuroendocrinology 151, 106071 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Snyder, K. S., Luchner, A. F. & Tantleff-Dunn, S. Adverse childhood experiences and insecure attachment: the indirect effects of dissociation and emotion regulation difficulties. Psychol. Trauma Theory Res. Pract. Policy 16, S20–S27 (2024).

    Article  Google Scholar 

  12. Elrefaay, S. M. M. & Elyzal, A. S. Adverse childhood experiences and depression: the mediating role of resilience and emotional regulation. J. Psychosoc. Nurs. Ment. Health Serv. 62, 45–54 (2024).

    Article  PubMed  Google Scholar 

  13. Baldwin, J. R., Reuben, A., Newbury, J. B. & Danese, A. Agreement between prospective and retrospective measures of childhood maltreatment: a systematic review and meta-analysis. JAMA Psychiatry 76, 584–593 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Cohen, R. T. & Kahana, M. J. A memory-based theory of emotional disorders. Psychol. Rev. 129, 742–776 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Richards, J. M. & Gross, J. J. Emotion regulation and memory: the cognitive costs of keeping one’s cool. J. Pers. Soc. Psychol. 79, 410–424 (2000).

    Article  PubMed  Google Scholar 

  16. Vaish, A., Grossmann, T. & Woodward, A. Not all emotions are created equal: the negativity bias in social-emotional development. Psychol. Bull. 134, 383–403 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Dalgleish, T. & Hitchcock, C. Transdiagnostic distortions in autobiographical memory recollection. Nat. Rev. Psychol. 2, 166–182 (2023).

    Article  Google Scholar 

  18. Danese, A. & Widom, C. S. Objective and subjective experiences of child maltreatment and their relationships with psychopathology. Nat. Hum. Behav. 4, 811–818 (2020).

    Article  PubMed  Google Scholar 

  19. Zhang, Z. et al. Frailty and depressive symptoms in relation to cardiovascular disease risk in middle-aged and older adults. Nat. Commun. 16, 6008 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Li, K. et al. The ripple effect: unveiling the bidirectional relationship between negative life events and depressive symptoms in medical cadets. Psychol. Res. Behav. Manag. 16, 3399–3412 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Núñez-Regueiro, F., Juhel, J., Bressoux, P. & Nurra, C. Identifying reciprocities in school motivation research: a review of issues and solutions associated with cross-lagged effects models. J. Educ. Psychol. 114, 945–965 (2022).

    Article  Google Scholar 

  22. Marciano, L., Schulz, P. J. & Camerini, A.-L. How do depression, duration of internet use and social connection in adolescence influence each other over time? An extension of the RI-CLPM including contextual factors. Comput. Hum. Behav. 136, 107390 (2022).

    Article  Google Scholar 

  23. Wu, T. C.-H., Lloyd, A., Viding, E. & Fearon, P. Examining longitudinal associations between interpersonal outcomes and general psychopathology factors across preadolescence using random intercept cross-lagged panel model. J. Child Psychol. Psychiatry 66, 932–945 (2025).

    Article  PubMed  Google Scholar 

  24. Ashbaugh, A. R., Marinos, J. & Bujaki, B. The impact of depression and PTSD symptom severity on trauma memory. Memory 26, 106–116 (2018).

    Article  PubMed  Google Scholar 

  25. Wheatley, J., Hackmann, A. & Brewin, C. in A Casebook of Cognitive Therapy for Traumatic Stress Reactions (ed. Grey, N.) 94–108 (Routledge, 2009).

  26. Griffith, J. W. et al. Effects of childhood abuse on overgeneral autobiographical memory in current major depressive disorder. Cogn. Ther. Res. 40, 774–782 (2016).

    Article  Google Scholar 

  27. LeMoult, J. & Gotlib, I. H. Depression: a cognitive perspective. Clin. Psychol. Rev. 69, 51–66 (2019).

    Article  PubMed  Google Scholar 

  28. Clark, H. Depression and Narrative: Telling the Dark (Univ. of New York Press, 2008).

  29. Nesi, J. et al. Emotional responses to social media experiences among adolescents: longitudinal associations with depressive symptoms. J. Clin. Child Adolesc. Psychol. 51, 907–922 (2022).

    Article  PubMed  Google Scholar 

  30. Li, C. et al. The role of self-esteem and emotion regulation in the associations between childhood trauma and mental health in adulthood: a moderated mediation model. BMC Psychiatry 23, 241 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Giano, Z. et al. ACE domains and depression: investigating which specific domains are associated with depression in adulthood. Child Abuse Negl. 122, 105335 (2021).

    Article  PubMed  Google Scholar 

  32. Iob, E., Lacey, R., Giunchiglia, V. & Steptoe, A. Adverse childhood experiences and severity levels of inflammation and depression from childhood to young adulthood: a longitudinal cohort study. Mol. Psychiatry 27, 2255–2263 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Falkenström, F. Time-lagged panel models in psychotherapy process and mechanisms of change research: methodological challenges and advances. Clin. Psychol. Rev. 110, 102435 (2024).

    Article  PubMed  Google Scholar 

  34. Wickersham, A. et al. Systematic review and meta-analysis: the association between child and adolescent depression and later educational attainment. J. Am. Acad. Child Adolesc. Psychiatry 60, 105–118 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Gariépy, G., Honkaniemi, H. & Quesnel-Vallée, A. Social support and protection from depression: systematic review of current findings in western countries. Br. J. Psychiatry 209, 284–293 (2016).

    Article  PubMed  Google Scholar 

  36. Kraft, L., Ebner, C., Leo, K. & Lindenberg, K. Emotion regulation strategies and symptoms of depression, anxiety, aggression, and addiction in children and adolescents: a meta-analysis and systematic review. Clin. Psychol. Sci. Pract. 30, 485–502 (2023).

    Article  Google Scholar 

  37. Ye, C., Ye, B. & Zhang, Z. The relationship between unpredictability in childhood and depression among college students: the mediating roles of coping style and resilience. BMC Psychol. 12, 333 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Madigan, S. et al. Adverse childhood experiences: a meta-analysis of prevalence and moderators among half a million adults in 206 studies. World Psychiatry 22, 463–471 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Malhi, G. S. & Mann, J. J. Depression. Lancet 392, 2299–2312 (2018).

    Article  PubMed  Google Scholar 

  40. Weissman, M. M. & Klerman, G. L. Gender and depression. Trends Neurosci. 8, 416–420 (1985).

    Article  Google Scholar 

  41. Frost, D. M. & Meyer, I. H. Minority stress theory: application, critique and continued relevance. Curr. Opin. Psychol. 51, 101579 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Rivas-Koehl, M., Rivas-Koehl, D. & McNeil Smith, S. The temporal intersectional minority stress model: reimagining minority stress theory. J. Fam. Theory Rev. 15, 706–726 (2023).

    Article  Google Scholar 

  43. Kundakovic, M. & Rocks, D. Sex hormone fluctuation and increased female risk for depression and anxiety disorders: from clinical evidence to molecular mechanisms. Front. Neuroendocrinol. 66, 101010 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Albert, P. R. Why is depression more prevalent in women? J. Psychiatry Neurosci. 40, 219–221 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kappel, R. H., Livingston, M. D., Patel, S. N., Villaveces, A. & Massetti, G. M. Prevalence of adverse childhood experiences (ACEs) and associated health risks and risk behaviors among young women and men in Honduras. Child Abuse Negl. 115, 104993 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Melo, S., Guedes, J. & Mendes, S. in Encyclopedia of Gerontology and Population Aging (eds Gu, D. & Dupre, M. E.) 1–8 (Springer, 2019).

  47. Dannefer, D. Cumulative advantage/disadvantage and the life course: cross-fertilizing age and social science theory. J. Gerontol. B Psychol. Sci. Soc. Sci. 58, P327–P337 (2003).

    Article  Google Scholar 

  48. Houtepen, L. C. et al. Associations of adverse childhood experiences with educational attainment and adolescent health and the role of family and socioeconomic factors: a prospective cohort study in the UK. PLoS Med. 17, e1003031 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Buckman, J. E. J. et al. Socioeconomic indicators of treatment prognosis for adults with depression: a systematic review and individual patient data meta-analysis. JAMA Psychiatry 79, 406–416 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Brinker, J. & Cheruvu, V. K. Social and emotional support as a protective factor against current depression among individuals with adverse childhood experiences. Prev. Med. Rep. 5, 127–133 (2017).

    Article  PubMed  Google Scholar 

  51. Gallo, L. C., Bogart, L. M., Vranceanu, A.-M. & Matthews, K. A. Socioeconomic status, resources, psychological experiences, and emotional responses: a test of the reserve capacity model. J. Pers. Soc. Psychol. 88, 386–399 (2005).

    Article  PubMed  Google Scholar 

  52. González, L. et al. Poverty, social exclusion, and mental health: the role of the family context in children aged 7–11 years INMA mother-and-child cohort study. Eur. Child Adolesc. Psychiatry 32, 235–248 (2023).

    Article  PubMed  Google Scholar 

  53. Stordal, E., Mykletun, A. & Dahl, A. A. The association between age and depression in the general population: a multivariate examination. Acta Psychiatr. Scand. 107, 132–141 (2003).

    Article  PubMed  Google Scholar 

  54. Zhang, Z. et al. Application of DASS-21 in Chinese students: invariance testing and network analysis. BMC Public Health 24, 2934 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Daescu, A.-M. C. et al. The paradox of sexual dysfunction observed during pregnancy. Healthcare (Basel) 11, 1914 (2023).

    Article  PubMed  Google Scholar 

  56. Beck, A. T., Steer, R. A. & Carbin, M. G. Psychometric properties of the Beck Depression Inventory: twenty-five years of evaluation. Clin. Psychol. Rev. 8, 77–100 (1988).

    Article  Google Scholar 

  57. Snoek, A., McGeer, V., Brandenburg, D. & Kennett, J. Managing shame and guilt in addiction: a pathway to recovery. Addict. Behav. 120, 106954 (2021).

    Article  PubMed  Google Scholar 

  58. Stuewig, J. & McCloskey, L. A. The relation of child maltreatment to shame and guilt among adolescents: psychological routes to depression and delinquency. Child Maltreat. 10, 324–336 (2005).

    Article  PubMed  Google Scholar 

  59. Sekowski, M. et al. The relations between childhood maltreatment, shame, guilt, depression and suicidal ideation in inpatient adolescents. J. Affect. Disord. 276, 667–677 (2020).

    Article  PubMed  Google Scholar 

  60. Pust, G. E. A. et al. Association of fatigue severity with maladaptive coping in multiple sclerosis: a data-driven psychodynamic perspective. Front. Neurol. 12, 652177 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Zhao, J., Sun, X. & Wang, Q. Emotional neglect and depressive symptoms of left-behind adolescents: the role of friendship quality and gender. J. Affect. Disord. 295, 377–383 (2021).

    Article  PubMed  Google Scholar 

  62. Hanson, J. L., Hariri, A. R. & Williamson, D. E. Blunted ventral striatum development in adolescence reflects emotional neglect and predicts depressive symptoms. Biol. Psychiatry 78, 598–605 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Sahle, B. W. et al. How much do adverse childhood experiences contribute to adolescent anxiety and depression symptoms? Evidence from the longitudinal study of Australian children. BMC Psychiatry 24, 289 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Munder, T. et al. Is psychotherapy effective? A re-analysis of treatments for depression. Epidemiol. Psychiatr. Sci. 28, 268–274 (2019).

    Article  PubMed  Google Scholar 

  65. Cuijpers, P. et al. Interpersonal psychotherapy for depression: a meta-analysis. Am. J. Psychiatry 168, 581–592 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Lane, R. D., Ryan, L., Nadel, L. & Greenberg, L. Memory reconsolidation, emotional arousal, and the process of change in psychotherapy: new insights from brain science. Behav. Brain Sci. 38, e1 (2015).

    Article  PubMed  Google Scholar 

  67. McNally, R. J., Bryant, R. A. & Ehlers, A. Does early psychological intervention promote recovery from posttraumatic stress? Psychol. Sci. Public Interest 4, 45–79 (2003).

    Article  PubMed  Google Scholar 

  68. Christian, C. et al. A pilot, time-series investigation of depression, anxiety and eating disorder symptoms in adults experiencing major depressive symptoms: the need for eating disorder assessment and research in depression. Behav. Ther. 54, 214–229 (2023).

    Article  PubMed  Google Scholar 

  69. Yu, S. Uncovering the hidden impacts of inequality on mental health: a global study. Transl. Psychiatry 8, 98 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Moss, N. E. Gender equity and socioeconomic inequality: a framework for the patterning of women’s health. Soc. Sci. Med. 54, 649–661 (2002).

    Article  PubMed  Google Scholar 

  71. Comacchio, C., Antolini, G., Ruggeri, M. & Colizzi, M. Gender-oriented mental health prevention: a reappraisal. Int. J. Environ. Res. Public Health 19, 1493 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Parbst, M. & Wheaton, B. The effect of welfare state policy spending on the equalization of socioeconomic status disparities in mental health. J. Health Soc. Behav. 64, 336–353 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Finkelhor, D., Shattuck, A., Turner, H. & Hamby, S. A revised inventory of adverse childhood experiences. Child Abuse Negl. 48, 13–21 (2015).

    Article  PubMed  Google Scholar 

  74. Purewal, S. K. et al. Screening for adverse childhood experiences (ACEs) in an integrated pediatric care model. Zero Three 37, 10–17 (2016).

    Google Scholar 

  75. Merrin, G. J. et al. Adverse childhood experiences and bullying during adolescence: a systematic literature review of two decades. Adolesc. Res. Rev. 9, 513–541 (2024).

    Google Scholar 

  76. Senaratne, D. N. S. et al. The impact of adverse childhood experiences on multimorbidity: a systematic review and meta-analysis. BMC Med. 22, 315 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Haczkewicz, K. M. et al. Adverse childhood experiences (ACEs), resilience, and outcomes in older adulthood: a scoping review. Child Abuse Negl 168, 106864 (2024).

    Article  PubMed  Google Scholar 

  78. Beck, A. T., Steer, R. A. & Brown, G. Beck Depression Inventory–II (Pearson, 2011).

  79. Paykani, T., Zimet, G. D., Esmaeili, R., Khajedaluee, A. R. & Khajedaluee, M. Perceived social support and compliance with stay-at-home orders during the COVID-19 outbreak: evidence from Iran. BMC Public Health 20, 1650 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Zhang, Z. et al. Gender differences in the mental symptom network of high school students in Shanghai, China: a network analysis. BMC Public Health 24, 2719 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  81. R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2024).

  82. Hirschfeld, G. & von Brachel, R. Improving multiple-group confirmatory factor analysis in R – a tutorial in measurement invariance with continuous and ordinal indicators. Pract. Assess. Res. Eval. 19, 7 (2014).

    Google Scholar 

  83. Chen, F. F. Sensitivity of goodness of fit indexes to lack of measurement invariance. Struct. Equ. Model. Multidiscip. J. 14, 464–504 (2007).

    Article  Google Scholar 

  84. Mulder, J. D. & Hamaker, E. L. Three extensions of the random intercept cross-lagged panel model. Struct. Equ. Model. Multidiscip. J. 28, 638–648 (2021).

    Article  Google Scholar 

  85. Rosseel, Y. lavaan: an R package for structural equation modeling. J. Stat. Softw. 48, 1–36 (2012).

    Article  Google Scholar 

  86. Hamaker, E. L., Kuiper, R. M. & Grasman, R. P. P. P. A critique of the cross-lagged panel model. Psychol. Methods 20, 102–116 (2015).

    Article  PubMed  Google Scholar 

  87. Savalei, V. & Rosseel, Y. Computational options for standard errors and test statistics with incomplete normal and nonnormal data in SEM. Struct. Equ. Model. Multidiscip. J. 29, 163–181 (2022).

    Article  Google Scholar 

  88. Yuan, K.-H. & Bentler, P. M. 5. Three likelihood-based methods for mean and covariance structure analysis with nonnormal missing data. Sociol. Methodol. 30, 165–200 (2000).

    Article  Google Scholar 

  89. Hu, L. & Bentler, P. M. Cutoff criteria for fit indexes in covariance structure analysis: conventional criteria versus new alternatives. Struct. Equ. Model. Multidiscip. J. 6, 1–55 (1999).

    Article  Google Scholar 

  90. Burnham, K. P. & Anderson, D. R. Multimodel inference: understanding AIC and BIC in model selection. Sociol. Methods Res. 33, 261–304 (2004).

    Article  Google Scholar 

  91. Epskamp, S., Cramer, A. O. J., Waldorp, L. J., Schmittmann, V. D. & Borsboom, D. qgraph: network visualizations of relationships in psychometric data. J. Stat. Softw. 48, 1–18 (2012).

    Article  Google Scholar 

  92. Friedman, J., Hastie, T. & Tibshirani, R. Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33, 1–22 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Ren, L. et al. Network structure of depression and anxiety symptoms in Chinese female nursing students. BMC Psychiatry 21, 279 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Epskamp, S. & Fried, E. I. A tutorial on regularized partial correlation networks. Psychol. Methods 23, 617–634 (2018).

    Article  PubMed  Google Scholar 

  95. Zhang, Z. & Zhou, C. R scripts for CLPN and RI-CLPM analyses. Zenodo https://doi.org/10.5281/zenodo.17649422 (2025).

Download references

Acknowledgements

All funding sources have been acknowledged. This research was supported by the National Natural Science Foundation of China (grants 82201708 and 32571271 to Y.W.; grant 32371098 to Q.M.), Guangdong Basic and Applied Basic Research Foundation (grant 2025A1515011554 to Y.W.; grant 2024A1515011429 to Q.M.), Guangdong Philosophy and Social Science Foundation (grant GD25YXL09 to Y.W.), Guangzhou Philosophy and Social Sciences Planning Project (grant 2025GZYB21 to Y.W.), the Research Center for Brain Cognition and Human Development, Guangdong, China (grant 2024B0303390003 to Y.W.), and the Striving for the First-Class, Improving Weak Links and Highlighting Features (SIH) Key Discipline for Psychology at South China Normal University. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Z.Z. and C.Z. contributed to conceptualization, methodology, formal analysis, visualization, writing of the original draft, and review and editing. R.Z. contributed to validation, and review and editing. Y.T. contributed to visualization, and review and editing. Y.Z. contributed to data curation and resources. P.Q. provided supervision and contributed to the methodology. B.S. provided supervision and resources. Y.W. contributed to conceptualization, supervision, funding acquisition and resources.

Corresponding authors

Correspondence to Pengmin Qin, Binyuan Su or Yuanyuan Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Mental Health thanks Farah Harb, Sofia Orellana, Dajung Sung and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–7 and Figs. 1–5

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Zhou, C., Zhang, R. et al. Depression shapes the recall of adverse childhood experiences: evidence from a three-wave longitudinal study of 6,260 Chinese adolescents. Nat. Mental Health (2026). https://doi.org/10.1038/s44220-025-00580-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s44220-025-00580-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing