Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Energy inefficiency underpinning brain state dysregulation in individuals with major depressive disorder

Abstract

Disruptions in brain state dynamics are a hallmark of major depressive disorder (MDD), yet their underlying mechanisms remain unclear. Here, building on network control theory, this case–control study reveals that energy inefficiency, characterized by elevated energy costs and reduced control stability, drives decreased state stability and increased state-switching frequency in MDD. Key brain regions, including the left dorsolateral prefrontal cortex and insula, exhibited impaired energy regulation capacity (a metric validated against cerebral metabolism). Moreover, these region-specific energy patterns were correlated with depressive symptom severity. Neurotransmitter and gene expression association analyses linked these energy deficits to intrinsic biological factors, notably the serotonin 5-HT2A receptor and astrocytes. These findings shed light on the energetic mechanism underlying brain state dysregulation in MDD and its associated biological underpinnings, highlighting brain energy dynamics as a potential biomarker by which to explore therapeutic targets and advance precise interventions for restoring healthy brain dynamics in depression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of methods and the study design.
Fig. 2: Altered temporal brain dynamics in MDD.
Fig. 3: Energy inefficiency in MDD.
Fig. 4: Impaired rERC in MDD and its link to clinical PHQ-2 scores.
Fig. 5: Gene expression profiles related to energy regulation deficits in MDD.

Similar content being viewed by others

Data availability

The large-scale neuroimaging and phenotypic data supporting the findings of this study are available via the UK Biobank at https://www.ukbiobank.ac.uk/ via their standard data access procedure. Access is subject to restrictions, and researchers can apply for access to the UK Biobank data via the Access Management System (AMS) at https://www.ukbiobank.ac.uk/use-our-data/apply-for-access/. This research was conducted using the UK Biobank resource under application number 88660. All other datasets utilized in this study, including normative metabolic maps, gene expression profiles and atlases, are publicly available. The normative map of cerebral oxygen metabolism can be obtained from the neuromaps toolbox via GitHub at https://github.com/netneurolab/neuromaps. The normative map of cerebral glucose metabolism is available via GitHub at https://github.com/NeuroenergeticsLab/control_costs/blob/master/data/annotations/tum/cmrglc. Human gene expression data from the AHBA are available at https://human.brain-map.org/static/download. A list of the cell-type-specific genes is available via GitHub at https://github.com/jms290/PolySyn_MSNs/blob/master/Data/AHBA/celltypes_PSP.csv. PET receptor and transporter maps are available via GitHub at https://github.com/netneurolab/hansen_receptors. The Brainnetome atlas can be downloaded at https://atlas.brainnetome.org/download.html. Source data are provided with this paper.

Code availability

The analyses in this study were performed using open-source libraries and pipelines implemented in Python (v3.9.21), MATLAB (R2022b) and R (v4.4.2). All specific toolboxes and code repositories adapted for this study are publicly available and listed below. The processing pipeline for structural connectome construction and functional time series extraction was adapted from publicly available code via GitHub at https://github.com/sina-mansour/UKB-connectomics, incorporating Freesurfer (v7.2.0), FMRIB Software Library (v6.0.4) and MRtrix3 (v3.0.3). Brain states were extracted via GitHub at https://github.com/NeuroenergeticsLab/control_costs, and their temporal characteristics were computed using code available via GitHub at https://github.com/singlesp/energy_landscape. Control energy calculations utilized the nctpy toolbox (v1.0.1; https://github.com/LindenParkesLab/nctpy). Meta-analytic functional decoding was performed using NiMARE (v0.5.2; https://github.com/neurostuff/NiMARE). The PLSC analysis was implemented using a modified version of myPLS available via GitHub at https://github.com/danizoeller/myPLS to include spin-based permutation tests. The PLSR for gene analysis utilized code available via GitHub at https://github.com/KirstieJane/NSPN_WhitakerVertes_PNAS2016. Spatial permutation testing (spin tests) was performed using code available via GitHub at https://github.com/frantisekvasa/rotate_parcellation and the ‘permutation_testing function‘ from the ENIGMA Toolbox. Gene enrichment analysis was conducted via Metascape (https://metascape.org), and the cell type deconvolution code is available via GitHub at https://github.com/netneurolab/hansen_genescognition. Degree-preserving null models were generated using the Brain Connectivity Toolbox (https://sites.google.com/site/bctnet), and code for geometry-preserving null networks is available at https://www.brainnetworkslab.com/coderesources. Brain maps were fetched using Neuromaps (v0.0.5; https://github.com/netneurolab/neuromaps) and the ENIGMA Toolbox (v2.0.1; https://github.com/MICA-MNI/ENIGMA). Custom code developed specifically for this study is available via GitHub at https://github.com/YidaoWen/MDD-BrainState-Energy.

References

  1. Depression and Other Common Mental Disorders: Global Health Estimates WHO Reference Number WHO/MSD/MER/2017.2 (WHO, 2017).

  2. Marwaha, S. et al. Novel and emerging treatments for major depression. Lancet 401, 141–153 (2023).

    Article  PubMed  Google Scholar 

  3. Kupfer, D. J., Frank, E. & Phillips, M. L. Major depressive disorder: new clinical, neurobiological, and treatment perspectives. Lancet 379, 1045–1055 (2012).

    Article  PubMed  Google Scholar 

  4. Malhi, G. S. & Mann, J. J. Depression. Lancet 392, 2299–2312 (2018).

    Article  PubMed  Google Scholar 

  5. aan het Rot, M., Mathew, S. J. & Charney, D. S. Neurobiological mechanisms in major depressive disorder. CMAJ 180, 305–313 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Gong, Q. & He, Y. Depression, neuroimaging and connectomics: a selective overview. Biol. Psychiatry 77, 223–235 (2015).

    Article  PubMed  Google Scholar 

  7. Chai, Y. et al. Functional connectomics in depression: insights into therapies. Trends Cogn. Sci. 27, 814–832 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Drysdale, A. T. et al. Resting-state connectivity biomarkers define neurophysiological subtypes of depression. Nat. Med. 23, 28–38 (2017).

    Article  PubMed  Google Scholar 

  9. van den Heuvel, M. P. & Sporns, O. A cross-disorder connectome landscape of brain dysconnectivity. Nat. Rev. Neurosci. 20, 435–446 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lynch, C. J. et al. Frontostriatal salience network expansion in individuals in depression. Nature 633, 624–633 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Braun, U. et al. From maps to multi-dimensional network mechanisms of mental disorders. Neuron 97, 14–31 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Tang, E. & Bassett, D. S. Colloquium: control of dynamics in brain networks. Rev. Mod. Phys. 90, 031003 (2018).

    Article  Google Scholar 

  13. Sporns, O. et al. Organization, development and function of complex brain networks. Trends Cogn. Sci. 8, 418–425 (2004).

    Article  PubMed  Google Scholar 

  14. Deco, G., Jirsa, V. K. & McIntosh, A. R. Emerging concepts for the dynamical organization of resting-state activity in the brain. Nat. Rev. Neurosci. 12, 43–56 (2011).

    Article  PubMed  Google Scholar 

  15. Hutchison, R. M. et al. Dynamic functional connectivity: promise, issues, and interpretations. NeuroImage 80, 360–378 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kringelbach, M. L. & Deco, G. Brain states and transitions: insights from computational neuroscience. Cell Rep. 32, 108128 (2020).

    Article  PubMed  Google Scholar 

  17. Preti, M. G., Bolton, T. A. & Van De Ville, D. The dynamic functional connectome: state-of-the-art and perspectives. NeuroImage 160, 41–54 (2017).

    Article  PubMed  Google Scholar 

  18. Shine, J. M. et al. The dynamics of functional brain networks: integrated network states during cognitive task performance. Neuron 92, 544–554 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Cornblath, E. J. et al. Temporal sequences of brain activity at rest are constrained by white matter structure and modulated by cognitive demands. Commun. Biol. 3, 261 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Cabral, J. et al. Cognitive performance in healthy older adults relates to spontaneous switching between states of functional connectivity during rest. Sci. Rep. 7, 5135 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Gu, S. et al. Controllability of structural brain networks. Nat. Commun. 6, 8414 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Gu, S. et al. Optimal trajectories of brain state transitions. NeuroImage 148, 305–317 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Holtzheimer, P. E. & Mayberg, H. S. Stuck in a rut: rethinking depression and its treatment. Trends Neurosci. 34, 1–9 (2011).

    Article  PubMed  Google Scholar 

  24. Javaheripour, N. et al. Altered brain dynamic in major depressive disorder: state and trait features. Transl. Psychiatry 13, 261 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wang, S. et al. Transition and dynamic reconfiguration of whole-brain network in major depressive disorder. Mol. Neurobiol. 57, 4031–4044 (2020).

    Article  PubMed  Google Scholar 

  26. Alonso, S. et al. Depression recurrence is accompanied by longer periods in default mode and more frequent attentional and reward processing dynamic brain-states during resting-state activity. Hum. Brain Mapp. 44, 5770–5783 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Figueroa, C. A. et al. Altered ability to access a clinically relevant control network in patients remitted from major depressive disorder. Hum. Brain Mapp. 40, 2771–2786 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kaiser, R. H. et al. Dynamic resting-state functional connectivity in major depression. Neuropsychopharmacology 41, 1822–1830 (2016).

    Article  PubMed  Google Scholar 

  29. Kaiser, R. H. et al. Large-scale network dysfunction in major depressive disorder: a meta-analysis of resting-state functional connectivity. JAMA Psychiatry 72, 603–611 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Marchitelli, R. et al. Dynamic functional connectivity in adolescence-onset major depression: relationships with severity and symptom dimensions. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 7, 385–396 (2022).

    PubMed  Google Scholar 

  31. Murphy, M. et al. Abnormalities in electroencephalographic microstates are state and trait markers of major depressive disorder. Neuropsychopharmacology 45, 2030–2037 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Liu, C. et al. Trait- and state-like co-activation pattern dynamics in current and remitted major depressive disorder. J. Affect. Disord. 337, 159–168 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wang, Q. et al. Connectomics-based resting-state functional network alterations predict suicidality in major depressive disorder. Transl. Psychiatry 13, 365 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Scangos, K. W. et al. State-dependent responses to intracranial brain stimulation in a patient with depression. Nat. Med. 27, 229–231 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Cole, E. J. et al. Stanford accelerated intelligent neuromodulation therapy for treatment-resistant depression. Am. J. Psychiatry 177, 716–726 (2020).

    Article  PubMed  Google Scholar 

  36. Scangos, K. W. et al. Closed-loop neuromodulation in an individual with treatment-resistant depression. Nat. Med. 27, 1696–1700 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Lynn, C. W. & Bassett, D. S. The physics of brain network structure, function and control. Nat. Rev. Phys. 1, 318–332 (2019).

    Article  Google Scholar 

  38. Honey, C. J. et al. Predicting human resting-state functional connectivity from structural connectivity. Proc. Natl Acad. Sci. USA 106, 2035–2040 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Honey, C. J. et al. Network structure of cerebral cortex shapes functional connectivity on multiple time scales. Proc. Natl Acad. Sci. USA 104, 10240–10245 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Pang, J. C. et al. Geometric constraints on human brain function. Nature 618, 566–574 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Gates, A. J. & Rocha, L. M. Control of complex networks requires both structure and dynamics. Sci Rep. 6, 24456 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kim, J. Z. et al. Role of graph architecture in controlling dynamical networks with applications to neural systems. Nat. Phys. 14, 91–98 (2018).

    Article  PubMed  Google Scholar 

  43. Parkes, L. et al. A network control theory pipeline for studying the dynamics of the structural connectome. Nat. Protoc. 19, 3721–3749 (2024).

  44. Karrer, T. M. et al. A practical guide to methodological considerations in the controllability of structural brain networks. J. Neural Eng 17, 026031 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Scheid, B. H. et al. Time-evolving controllability of effective connectivity networks during seizure progression. Proc. Natl Acad. Sci. USA 118, e2006436118 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Luppi, A. I. et al. Contributions of network structure, chemoarchitecture and diagnostic categories to transitions between cognitive topographies. Nat. Biomed. Eng 8, 1142–1161 (2024).

  47. Betzel, R. F. et al. Optimally controlling the human connectome: the role of network topology. Sci Rep. 6, 30770 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Stiso, J. et al. White matter network architecture guides direct electrical stimulation through optimal state transitions. Cell Rep. 28, 2554–2566.e7 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Ceballos, E. G. et al. The control costs of human brain dynamics. Netw. Neurosci. 9, 77–99 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  50. He, X. et al. Uncovering the biological basis of control energy: structural and metabolic correlates of energy inefficiency in temporal lobe epilepsy. Sci. Adv. 8, eabn2293 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Braun, U. et al. Brain network dynamics during working memory are modulated by dopamine and diminished in schizophrenia. Nat. Commun. 12, 3478 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Zoller, D. et al. Structural control energy of resting-state functional brain states reveals less cost-effective brain dynamics in psychosis vulnerability. Hum. Brain Mapp. 42, 2181–2200 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Singleton, S. P. et al. Receptor-informed network control theory links LSD and psilocybin to a flattening of the brain’s control energy landscape. Nat. Commun. 13, 5812 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Cui, Z. et al. Optimization of energy state transition trajectory supports the development of executive function during youth. eLife 9, e53060 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Hahn, T. et al. Genetic, individual, and familial risk correlates of brain network controllability in major depressive disorder. Mol. Psychiatry 28, 1057–1063 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Tang, B. et al. Transdiagnostic white matter controllability deficits across patients with affective and anxiety spectrum disorders. J. Affect. Disord. 370, 268–276 (2025).

    Article  PubMed  Google Scholar 

  57. Kenett, Y. N., Beaty, R. E. & Medaglia, J. D. A computational network control theory analysis of depression symptoms. Pers. Neurosci. 1, e16 (2018).

    Google Scholar 

  58. Fang, F. et al. Brain controllability distinctiveness between depression and cognitive impairment. J. Affect. Disord. 294, 847–856 (2021).

    Article  PubMed  Google Scholar 

  59. Pan, C. et al. From connectivity to controllability: unraveling the brain biomarkers of major depressive disorder. Brain Sci. 14, 509 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Li, Q. et al. Linked patterns of symptoms and cognitive covariation with functional brain controllability in major depressive disorder. eBioMedicine 106, 105255 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Fang, F. et al. Personalizing repetitive transcranial magnetic stimulation for precision depression treatment based on functional brain network controllability and optimal control analysis. NeuroImage 260, 119465 (2022).

    Article  PubMed  Google Scholar 

  62. Menardi, A. et al. Maximizing brain networks engagement via individualized connectome-wide target search. Brain Stimul. 15, 1418–1431 (2022).

    Article  PubMed  Google Scholar 

  63. Cui, L. et al. Major depressive disorder: hypothesis, mechanism, prevention and treatment. Signal Transduct. Target. Ther. 9, 30 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Kendall, K. M. et al. The genetic basis of major depression. Psychol. Med. 51, 2217–2230 (2021).

    Article  PubMed  Google Scholar 

  65. Peterson, R. E. The genetics of major depression: perspectives on the state of research and opportunities for precision medicine. Psychiatr. Ann. 51, 165–169 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Chu, T. et al. Regional structural–functional connectivity coupling in major depressive disorder is associated with neurotransmitter and genetic profiles. Biol. Psychiatry 97, 290–301 (2025).

  67. Xue, K. et al. Local dynamic spontaneous brain activity changes in first-episode, treatment-naive patients with major depressive disorder and their associated gene expression profiles. Psychol. Med. 52, 2052–2061 (2022).

    Article  PubMed  Google Scholar 

  68. Xue, K. et al. Transcriptional signatures of the cortical morphometric similarity network gradient in first-episode, treatment-naive major depressive disorder. Neuropsychopharmacology 48, 518–528 (2023).

    Article  PubMed  Google Scholar 

  69. Li, J. et al. Cortical structural differences in major depressive disorder correlate with cell type-specific transcriptional signatures. Nat. Commun. 12, 1647 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Xia, M. et al. Connectome gradient dysfunction in major depression and its association with gene expression profiles and treatment outcomes. Mol. Psychiatry 27, 1384–1393 (2022).

    Article  PubMed  Google Scholar 

  71. Ji, G.-J. et al. White matter dysfunction in psychiatric disorders is associated with neurotransmitter and genetic profiles. Nat. Ment. Health 1, 655–666 (2023).

    Article  Google Scholar 

  72. Sudlow, C. et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 12, e1001779 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Miller, K. L. et al. Multimodal population brain imaging in the UK Biobank prospective epidemiological study. Nat. Neurosci. 19, 1523–1536 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Alfaro-Almagro, F. et al. Image processing and quality control for the first 10,000 brain imaging datasets from UK Biobank. NeuroImage 166, 400–424 (2018).

    Article  PubMed  Google Scholar 

  76. Di Biase, M. A. et al. Connectomes for 40,000 UK Biobank participants: a multi-modal, multi-scale brain network resource. NeuroImage 283, 120407 (2023).

    Article  PubMed  Google Scholar 

  77. Fan, L. et al. The Human Brainnetome Atlas: a new brain atlas based on connectional architecture. Cereb. Cortex 26, 3508–3526 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Yeo, B. T. et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 1125–1165 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Raichle, M. E. The brain’s default mode network. Annu. Rev. Neurosci. 38, 433–447 (2015).

    Article  PubMed  Google Scholar 

  80. Raichle, M. E. et al. A default mode of brain function. Proc. Natl Acad. Sci. USA 98, 676–682 (2001).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Buckner, R. L. & DiNicola, L. M. The brain’s default network: updated anatomy, physiology and evolving insights. Nat. Rev. Neurosci. 20, 593–608 (2019).

    Article  PubMed  Google Scholar 

  82. Castrillon, G. et al. An energy costly architecture of neuromodulators for human brain evolution and cognition. Sci. Adv. 9, eadi7632 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Vaishnavi, S. N. et al. Regional aerobic glycolysis in the human brain. Proc. Natl Acad. Sci. USA 107, 17757–17762 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Carlén, M. What constitutes the prefrontal cortex?. Science 358, 478–482 (2017).

    Article  PubMed  Google Scholar 

  85. Zoller, D. et al. Large-scale brain network dynamics provide a measure of psychosis and anxiety in 22q11.2 deletion syndrome. Biol. Psychiatry Cogn. Neurosci. Neuroimag. 4, 881–892 (2019).

    Google Scholar 

  86. Hansen, J. Y. et al. Mapping neurotransmitter systems to the structural and functional organization of the human neocortex. Nat. Neurosci. 25, 1569–1581 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Hawrylycz, M. J. et al. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 489, 391–399 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Sunkin, S. M. et al. Allen Brain Atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic Acids Res. 41, D996–D1008 (2013).

    Article  PubMed  Google Scholar 

  89. Zhou, Y. et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 10, 1523 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Pinero, J. et al. The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res. 48, D845–D855 (2020).

    PubMed  PubMed Central  Google Scholar 

  91. Seidlitz, J. et al. Transcriptomic and cellular decoding of regional brain vulnerability to neurogenetic disorders. Nat. Commun. 11, 3358 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Allen, N. J. & Barres, B. A. Glia — more than just brain glue. Nature 457, 675–677 (2009).

    Article  PubMed  Google Scholar 

  93. Price, J. L. & Drevets, W. C. Neural circuits underlying the pathophysiology of mood disorders. Trends Cogn. Sci. 16, 61–71 (2012).

    Article  PubMed  Google Scholar 

  94. Bullmore, E. & Sporns, O. The economy of brain network organization. Nat. Rev. Neurosci. 13, 336–349 (2012).

    Article  PubMed  Google Scholar 

  95. Drevets, W. C., Price, J. L. & Furey, M. L. Brain structural and functional abnormalities in mood disorders: implications for neurocircuitry models of depression. Brain Struct. Funct. 213, 93–118 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  96. LeMoult, J. & Gotlib, I. H. Depression: a cognitive perspective. Clin. Psychol. Rev. 69, 51–66 (2019).

    Article  PubMed  Google Scholar 

  97. Taylor Tavares, J. V., Drevets, W. C. & Sahakian, B. J. Cognition in mania and depression. Psychol. Med. 33, 959–967 (2003).

    Article  PubMed  Google Scholar 

  98. Zhang, Y. M. et al. Astrocyte metabolism and signaling pathways in the CNS. Front. Neurosci. 17, 1217451 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Wise, T. et al. Common and distinct patterns of grey-matter volume alteration in major depression and bipolar disorder: evidence from voxel-based meta-analysis. Mol. Psychiatry 22, 1455–1463 (2017).

    Article  PubMed  Google Scholar 

  100. Writing Committee for the Attention-Deficit/Hyperactivity Disorder et al. Virtual histology of cortical thickness and shared neurobiology in 6 psychiatric disorders. JAMA Psychiatry 78, 47–63 (2021).

    Article  Google Scholar 

  101. Repple, J. et al. Severity of current depression and remission status are associated with structural connectome alterations in major depressive disorder. Mol. Psychiatry 25, 1550–1558 (2020).

    Article  PubMed  Google Scholar 

  102. Yan, C. G. et al. Reduced default mode network functional connectivity in patients with recurrent major depressive disorder. Proc. Natl Acad. Sci. USA 116, 9078–9083 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Iwabuchi, S. J. et al. Baseline effective connectivity predicts response to repetitive transcranial magnetic stimulation in patients with treatment-resistant depression. Eur. Neuropsychopharmacol. 29, 681–690 (2019).

    Article  PubMed  Google Scholar 

  104. Xia, M. & He, Y. Connectome-guided transcranial magnetic stimulation treatment in depression. Eur. Child Adolesc. Psychiatry 31, 1481–1483 (2022).

    Article  PubMed  Google Scholar 

  105. Uhlhaas, P. J. & Singer, W. Neuronal dynamics and neuropsychiatric disorders: toward a translational paradigm for dysfunctional large-scale networks. Neuron 75, 963–980 (2012).

    Article  PubMed  Google Scholar 

  106. Liu, Y. et al. Transcriptional characteristics of human brain alterations in major depressive disorder: a systematic review. Psychoneuroendocrinology 177, 107472 (2025).

    Article  PubMed  Google Scholar 

  107. Liu, Y. et al. Prioritization and comprehensive analysis of genes related to major depressive disorder. Mol. Genet. Genomic Med. 7, e659 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Alttoa, A. et al. Differential gene expression in a rat model of depression based on persistent differences in exploratory activity. Eur. Neuropsychopharmacol. 20, 288–300 (2010).

    Article  PubMed  Google Scholar 

  109. Inaba, H. et al. GPCR-mediated calcium and cAMP signaling determines psychosocial stress susceptibility and resiliency. Sci. Adv. 9, eade5397 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Duman, R. S. & Voleti, B. Signaling pathways underlying the pathophysiology and treatment of depression: novel mechanisms for rapid-acting agents. Trends Neurosci. 35, 47–56 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Fujita, M. et al. cAMP signaling in brain is decreased in unmedicated depressed patients and increased by treatment with a selective serotonin reuptake inhibitor. Mol. Psychiatry 22, 754–759 (2017).

    Article  PubMed  Google Scholar 

  112. Hu, G. et al. The role of apelin/apelin receptor in energy metabolism and water homeostasis: a comprehensive narrative review. Front. Physiol. 12, 632886 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Theparambil, S. M. et al. Adenosine signalling to astrocytes coordinates brain metabolism and function. Nature 632, 139–146 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Fernandez Galan, R. On how network architecture determines the dominant patterns of spontaneous neural activity. PLoS ONE 3, e2148 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Nozari, E. et al. Macroscopic resting-state brain dynamics are best described by linear models. Nat. Biomed. Eng. 8, 68–84 (2024).

    Article  PubMed  Google Scholar 

  116. Yan, G. et al. Network control principles predict neuron function in the Caenorhabditis elegans connectome. Nature 550, 519–523 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Zanudo, J. G. T., Yang, G. & Albert, R. Structure-based control of complex networks with nonlinear dynamics. Proc. Natl Acad. Sci. USA 114, 7234–7239 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Li, A. et al. The fundamental advantages of temporal networks. Science 358, 1042–1046 (2017).

    Article  PubMed  Google Scholar 

  119. Jbabdi, S. & Johansen-Berg, H. Tractography: where do we go from here?. Brain Connect. 1, 169–183 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Tournier, J.-D. et al. MRtrix3: a fast, flexible and open software framework for medical image processing and visualisation. NeuroImage 202, 116137 (2019).

    Article  PubMed  Google Scholar 

  121. Smith, R. E. et al. Anatomically-constrained tractography: improved diffusion MRI streamlines tractography through effective use of anatomical information. NeuroImage 62, 1924–1938 (2012).

    Article  PubMed  Google Scholar 

  122. Markello, R. D. et al. Neuromaps: structural and functional interpretation of brain maps. Nat. Methods 19, 1472–1479 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Arnatkevic̆iūtė, A., Fulcher, B. D. & Fornito, A. A practical guide to linking brain-wide gene expression and neuroimaging data. NeuroImage 189, 353–367 (2019).

    Article  PubMed  Google Scholar 

  124. Romero-Garcia, R. et al. Schizotypy-related magnetization of cortex in healthy adolescence is colocated with expression of schizophrenia-related genes. Biol. Psychiatry 88, 248–259 (2020).

    Article  PubMed  Google Scholar 

  125. Hansen, J. Y. et al. Mapping gene transcription and neurocognition across human neocortex. Nat. Hum. Behav. 5, 1240–1250 (2021).

    Article  PubMed  Google Scholar 

  126. Zhang, Y. et al. Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse. Neuron 89, 37–53 (2016).

    Article  PubMed  Google Scholar 

  127. Lake, B. B. et al. Integrative single-cell analysis of transcriptional and epigenetic states in the human adult brain. Nat. Biotechnol. 36, 70–80 (2018).

    Article  PubMed  Google Scholar 

  128. Darmanis, S. et al. A survey of human brain transcriptome diversity at the single cell level. Proc. Natl Acad. Sci. USA 112, 7285–7290 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Li, M. et al. Integrative functional genomic analysis of human brain development and neuropsychiatric risks. Science 362, eaat7615 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300 (1995).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the STI2030-Major Projects (grant no. 2021ZD0200200 to T.J.), National Natural Science Foundation of China (grant nos. 62327805 to T.J., 12301642 to H.X. and 62403465 to W.S.) and China Postdoctoral Science Foundation (grant nos. GZC20232999 and 2024M753502 to W.S.). The research was conducted using the UK Biobank resources, with approved project number 88660. We sincerely appreciate the participants for their contributions and the UK Biobank team for their dedication to data collection, processing and dissemination. We are grateful to our colleagues at the Brainnetome Center for their support and insightful discussions, as well as R. E. Perozzi and E. F. Perozzi for their valuable assistance in reviewing and refining the English and content of this article.

Author information

Authors and Affiliations

Authors

Contributions

Q.L. and H.X. conceptualized the study. Q.L., H.X. and W.S. developed the methodology. Q.L., W.S., S.D. and X.C. curated the data. Q.L., H.X., W.S., S.D., X.C., N. Liu, N. Luo and Y.Z. conducted the investigation. Q.L. and W.S. contributed to the visualization. T.J. supervised the study. Q.L. and H.X. drafted the original paper. Q.L., H.X., W.S. and T.J. reviewed and edited the paper.

Corresponding author

Correspondence to Tianzi Jiang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Mental Health thanks J. Paul Hamilton, Diego Pizzagalli and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Results, Figs. 1–15, Tables 1–10 and References.

Reporting Summary

Supplementary Data 1

Source data for Supplementary Figs. 3–9, 11 and 12.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Xiong, H., Shi, W. et al. Energy inefficiency underpinning brain state dysregulation in individuals with major depressive disorder. Nat. Mental Health (2026). https://doi.org/10.1038/s44220-025-00583-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s44220-025-00583-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing