Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Prototyping and modelling a photovoltaic–thermal electrochemical stripping system for distributed urine nitrogen recovery

Abstract

Distributed solar-enabled nitrogen capture from urine helps to manage the nitrogen cycle and increases fertilizer, sanitation and electricity access. Here we provide proof of concept for a photovoltaic–thermal electrochemical stripping (ECS) system, known as solar-ECS, that recovers ammonium sulfate fertilizer from real urine independently of the electricity grid. Constant control of photovoltaic currents and extracting waste heat to cool the solar panel while heating ECS enabled 59.3 ± 3.6% more power production and improved ammonia recovery efficiency by 22.4 ± 7.4% relative to prototypes with no heat transfer and uncontrolled currents. The added heat accelerated ammonia volatilization (the rate-limiting step of ECS), while preventing excessive current via charge controllers reduced energy use by 2.24 ± 0.25 kJ g−1 N per excess milliampere per square centimetre. A new process model for ECS operation at different currents and temperatures was proposed and applied to estimate possible net fertilizer revenues of up to US$2.18 kg−1 N in US markets and US$4.13 kg−1 N in African markets. By advancing the recovery of high-purity commodity chemicals from underused wastewaters, this work supports United Nations Sustainable Development Goals for zero hunger, clean water and sanitation, clean energy and responsible production.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ECS set-up.
Fig. 2: Effect of applied current on ECS operation.
Fig. 3: Effects of temperature on ECS operation.
Fig. 4: Solar-ECS prototype configurations.
Fig. 5: Temperature variation during prototype operation.
Fig. 6: Comparison of solar-ECS performance under different operation modes.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available via the Stanford Digital Repository at https://doi.org/10.25740/yx617jq4815 (ref. 63).

Code availability

The code used for modelling is available via GitHub at https://github.com/orisac/SolarECS.

References

  1. Wald, C. The urine revolution: how recycling pee could help to save the world. Nature 602, 202–206 (2022).

    Article  PubMed  CAS  Google Scholar 

  2. Matassa, S. et al. How can we possibly resolve the planet’s nitrogen dilemma? Microb. Biotechnol. 16, 15–27 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Comer, B. M. et al. Prospects and challenges for solar fertilizers. Joule 3, 1578–1605 (2019).

    Article  CAS  Google Scholar 

  4. Smith, C., Hill, A. K. & Torrente-Murciano, L. Current and future role of Haber–Bosch ammonia in a carbon-free energy landscape. Energy Environ. Sci. 13, 331–344 (2020).

    Article  Google Scholar 

  5. Snapp, S. et al. Spatially differentiated nitrogen supply is key in a global food–fertilizer price crisis. Nat. Sustain. 6, 1268–1278 (2023).

    Article  Google Scholar 

  6. Coskun, D., Britto, D. T., Shi, W. & Kronzucker, H. J. Nitrogen transformations in modern agriculture and the role of biological nitrification inhibition. Nat. Plants 3, 17074 (2017).

    Article  PubMed  CAS  Google Scholar 

  7. Smith, V. H. Eutrophication of freshwater and coastal marine ecosystems a global problem. Environ. Sci. Pollut. Res. 10, 126–139 (2003).

    Article  CAS  Google Scholar 

  8. Wong, C. A., Lobell, D. B. & Mauter, M. S. Multicriteria suitability index for prioritizing early-stage deployments of wastewater-derived fertilizers in sub-Saharan Africa. Environ. Sci. Technol. 57, 17588–17597 (2023).

    Article  PubMed  CAS  Google Scholar 

  9. Tonelli, D., Rosa, L., Gabrielli, P., Parente, A. & Contino, F. Cost-competitive decentralized ammonia fertilizer production can increase food security. Nat. Food 5, 469–479 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Larsen, T. A., Hoffmann, S., Lüthi, C., Truffer, B. & Maurer, M. Emerging solutions to the water challenges of an urbanizing world. Science 352, 928–933 (2016).

    Article  PubMed  CAS  Google Scholar 

  11. Jones, E. C. & Leibowicz, B. D. Co-optimization and community: maximizing the benefits of distributed electricity and water technologies. Sustain. Cities Soc. 64, 102515 (2021).

    Article  Google Scholar 

  12. Rabaey, K., Vandekerckhove, T., de Walle, A. V. & Sedlak, D. L. The third route: using extreme decentralization to create resilient urban water systems. Water Res. 185, 116276 (2020).

    Article  PubMed  CAS  Google Scholar 

  13. Tarpeh, W. A., Barazesh, J. M., Cath, T. Y. & Nelson, K. L. Electrochemical stripping to recover nitrogen from source-separated urine. Environ. Sci. Technol. 52, 1453–1460 (2018).

    Article  PubMed  CAS  Google Scholar 

  14. Kogler, A. et al. Long-term robustness and failure mechanisms of electrochemical stripping for wastewater ammonia recovery. ACS Environ. Au 4, 89–105 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Liu, M. J., Neo, B. S. & Tarpeh, W. A. Building an operational framework for selective nitrogen recovery via electrochemical stripping. Water Res. 169, 115226 (2020).

    Article  PubMed  CAS  Google Scholar 

  16. Kogler, A., Gong, M., Williams, K. S. & Tarpeh, W. A. Flexible electrochemical stripping for wastewater ammonia recovery with on-demand product tunability. Environ. Sci. Technol. Lett. 11, 886–894 (2024).

    Article  CAS  Google Scholar 

  17. Fesharaki, V. J., Dehghani, M., Fesharaki, J. J. & Tavasoli, H. The effect of temperature on photovoltaic cell efficiency. In Proc. 1st International Conference on Emerging Trends in Energy Conservation. https://www.academia.edu/92375607/The_Effect_of_Temperature_on_Photovoltaic_Cell_Efficiency (2011).

  18. Dwivedi, P., Sudhakar, K., Soni, A., Solomin, E. & Kirpichnikova, I. Advanced cooling techniques of P.V. modules: a state of art. Case Stud. Therm. Eng 21, 100674 (2020).

    Article  Google Scholar 

  19. Zubeer, S. A., Mohammed, H. A. & Ilkan, M. A review of photovoltaic cells cooling techniques. E3S Web Conf. 22, 00205 (2017).

    Article  Google Scholar 

  20. Sharaf, M., Yousef, M. S. & Huzayyin, A. S. Review of cooling techniques used to enhance the efficiency of photovoltaic power systems. Environ. Sci. Pollut. Res. 29, 26131–26159 (2022).

    Article  Google Scholar 

  21. Shi, Q. & Duan, H. Recent progress in photoelectrocatalysis beyond water oxidation. Chem Catal. 2, 3471–3496 (2022).

    CAS  Google Scholar 

  22. Poonia, K. et al. Photoelectrocatalytic systems for simultaneous energy recovery and wastewater treatment: a review. Environ. Chem. Lett. 21, 265–283 (2023).

    Article  CAS  Google Scholar 

  23. Srivastava, N. et al. Prospects of solar-powered nitrogenous fertilizers. Renew. Sustain. Energy Rev. 187, 113691 (2023).

    Article  CAS  Google Scholar 

  24. Zhou, B. et al. Renewable energy driven electroreduction nitrate to ammonia and in-situ ammonia recovery via a flow-through coupled device. Water Res. 242, 120256 (2023).

    Article  PubMed  CAS  Google Scholar 

  25. Anand, B. et al. A review on solar photovoltaic thermal integrated desalination technologies. Renew. Sustain. Energy Rev. 141, 110787 (2021).

    Article  CAS  Google Scholar 

  26. Miller, D. M. et al. Engineering a molecular electrocatalytic system for energy-efficient ammonia production from wastewater nitrate. Energy Environ. Sci. 17, 5691–5705 (2024).

    Article  CAS  Google Scholar 

  27. Ochs, P. et al. Techno-economic analysis of sidestream ammonia removal technologies: biological options versus thermal stripping. Environ. Sci. Ecotechnol. 13, 100220 (2023).

    Article  PubMed  CAS  Google Scholar 

  28. Hochman, G. et al. Potential economic feasibility of direct electrochemical nitrogen reduction as a route to ammonia. ACS Sustain. Chem. Eng. 8, 8938–8948 (2020).

    Article  CAS  Google Scholar 

  29. Rodrigues, M. et al. Application of ammonium fertilizers recovered by an electrochemical system. Resour. Conserv. Recycl. 181, 106225 (2022).

    Article  CAS  Google Scholar 

  30. Millán, M., Fernández-Marchante, C. M., Lobato, J., Cañizares, P. & Rodrigo, M. A. Management of solar energy to power electrochemical wastewater treatments. J. Water Process Eng. 41, 102056 (2021).

    Article  Google Scholar 

  31. Azimoh, C., Klintenberg, P., Wallin, F., Karlsson, B. & Mbohwa, C. Electricity for development: mini-grid solution for rural electrification in South Africa. Energy Convers. Manag. 110, 268–277 (2016).

    Article  Google Scholar 

  32. Oklahoma Production Cost Report (Bi-Weekly) (US Department of Agriculture, 2024); https://mymarketnews.ams.usda.gov/viewReport/3621

  33. Pacific Northwest Production Cost Report (Bi-Weekly) (US Department of Agriculture, 2024); https://mymarketnews.ams.usda.gov/viewReport/3657

  34. Chapin, F. T., Bolorinos, J. & Mauter, M. S. Electricity and natural gas tariffs at United States wastewater treatment plants. Sci. Data 11, 113 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Tariff Schedules (Electricity Regulatory Authority, 2025); https://www.era.go.ug/index.php/tariffs/tariff-schedules

  36. Cedrez, C. B., Chamberlin, J., Guo, Z. & Hijmans, R. J. Spatial variation in fertilizer prices in sub-Saharan Africa. PLoS ONE 15, e0227764 (2020).

    Article  Google Scholar 

  37. Gao, W., Fang, Q., Yan, H., Wei, X. & Wu, K. Recovery of acid and base from sodium sulfate containing lithium carbonate using bipolar membrane electrodialysis. Membranes 11, 152 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Kumar, A., Phillips, K. R., Thiel, G. P., Schröder, U. & Lienhard, J. H. Direct electrosynthesis of sodium hydroxide and hydrochloric acid from brine streams. Nat. Catal. 2, 106–113 (2019).

    Article  CAS  Google Scholar 

  39. Ray, H., Saetta, D. & Boyer, T. H. Characterization of urea hydrolysis in fresh human urine and inhibition by chemical addition. Environ. Sci. Water Res. Technol. 4, 87–98 (2018).

    Article  CAS  Google Scholar 

  40. Benghanem, M. S. & Alamri, S. N. Modeling of photovoltaic module and experimental determination of serial resistance. J. Taibah Univ. Sci. 2, 94–105 (2009).

    Article  Google Scholar 

  41. Cross, N. R. et al. Hydrocarbon-based membranes cost-effectively manage species transport and increase performance in thermally regenerative batteries. Electrochim. Acta 467, 143090 (2023).

    Article  CAS  Google Scholar 

  42. Liu, L. & Cheng, Q. Mass transfer characteristic research on electrodialysis for desalination and regeneration of solution: a comprehensive review. Renew. Sustain. Energy Rev. 134, 110115 (2020).

    Article  CAS  Google Scholar 

  43. Varain, L., Larisegger, S., Nelhiebel, M. & Fafilek, G. Simultaneous measurement and ODE-modeling of ion- and water permeability through ion exchange membranes. J. Membr. Sci. 684, 121847 (2023).

    Article  CAS  Google Scholar 

  44. Fong, K. D. et al. Ion transport and the true transference number in nonaqueous polyelectrolyte solutions for lithium ion batteries. ACS Cent. Sci. 5, 1250–1260 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Yang, K. & Qin, M. Enhancing selective ammonium transport in membrane electrochemical systems. Water Res. 257, 121668 (2024).

    Article  PubMed  CAS  Google Scholar 

  46. Luo, T., Abdu, S. & Wessling, M. Selectivity of ion exchange membranes: a review. J. Membr. Sci. 555, 429–454 (2018).

    Article  CAS  Google Scholar 

  47. Moats, M. S., Hiskey, J. B. & Collins, D. W. The effect of copper, acid, and temperature on the diffusion coefficient of cupric ions in simulated electrorefining electrolytes. Hydrometallurgy 56, 255–268 (2000).

    Article  CAS  Google Scholar 

  48. Epsztein, R., Shaulsky, E., Qin, M. & Elimelech, M. Activation behavior for ion permeation in ion-exchange membranes: role of ion dehydration in selective transport. J. Membr. Sci. 580, 316–326 (2019).

    Article  CAS  Google Scholar 

  49. Deen, W. M. Analysis of Transport Phenomena (Oxford Univ. Press, 2011).

  50. Sander, R. Ammonia. National Institute of Standards and Technology https://webbook.nist.gov/cgi/cbook.cgi?ID=C7664417&Mask=10#Solubility (2025).

  51. Haario, H., Laine, M., Mira, A. & Saksman, E. DRAM: efficient adaptive MCMC. Stat. Comput. 16, 339–354 (2006).

    Article  Google Scholar 

  52. Smith, R. C. in Uncertainty Quantification: Theory, Implementation, and Applications 187–206 (Society for Industrial and Applied Mathematics, 2013).

  53. Shen, M., Bennett, N., Ding, Y. & Scott, K. A concise model for evaluating water electrolysis. Int. J. Hydrogen Energy 36, 14335–14341 (2011).

    Article  CAS  Google Scholar 

  54. Hart, G. & Raghuraman, P. Electrical Aspects of Photovoltaic-System Simulation (US DOE, 1982); https://www.osti.gov/servlets/purl/5047353/

  55. Oklahoma City, OK Weather History (Weather Underground, 2024); https://www.wunderground.com/history/daily/us/ok/oklahoma-city/KOKC

  56. Palo Alto, CA Weather History (Weather Underground, 2024); https://www.wunderground.com/history/daily/us/ca/palo-alto/KPAO

  57. Weather in Nairobi in December 2023 (World Weather, 2025); https://world-weather.info/forecast/kenya/nairobi/december-2023/

  58. Calculation of solar insolation. PVEducation https://www.pveducation.org/pvcdrom/properties-of-sunlight/calculation-of-solar-insolation (2025).

  59. Investor overview. OGE Energy Corporation https://ogeenergy.gcs-web.com/ (2024).

  60. Net metering policies. Univ. of Arkansas Division of Agriculture https://www.uaex.uada.edu/environment-nature/energy/solar/net-metering.aspx (2024).

  61. Uganda introduces new net metering regulations. GET.transform https://www.get-transform.eu/uganda-introduces-new-net-metering-regulations/ (2024).

  62. Solar billing plan. PG&E Systems https://www.pge.com/en/clean-energy/solar/getting-started-with-solar/solar-billing-plan.html (2024).

  63. Coombs, O., Joo, T., Barbosa Botelho Junior, A., Chalise, D. & Tarpeh, W. Experimental data for prototyping and modeling a photovoltaic/thermal electrochemical stripping system for distributed urine nitrogen recovery. Stanford Digital Repository https://doi.org/10.25740/yx617jq4815 (2025).

Download references

Acknowledgements

We acknowledge the Knight-Hennessy Fellowship (to O.Z.C.) and the National Science Graduate Research Fellowship (DGE-2146755 to O.Z.C.) for their support. This work was also funded by the Stanford Center for Innovations in Global Health, the Camille Dreyfus Teacher-Scholar Award (TC-22-093 to W.A.T.), the Stanford Sustainability Accelerator and the Fundação de Amparo à Pesquisa do Estado de São Paulo and Capes (2019/11866-5 and 2023/01032-5 to A.B.B.J.). We also thank A. Kogler, K. Williams and M. Liu for their support throughout the research process.

Author information

Authors and Affiliations

Authors

Contributions

O.Z.C. conceived the idea. O.Z.C. and W.A.T. designed the research. O.Z.C. and A.B.B.J. carried out experiments and performed data analysis. O.Z.C., T.J. and D.C. formulated the model. O.Z.C wrote the code. O.Z.C., T.J., A.B.B.J. and W.A.T. participated in the discussion and writing of the paper. All of the authors approved the final version of the paper.

Corresponding author

Correspondence to William A. Tarpeh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Water thanks Jonathan Bessette, Wei He and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Model Fitting.

Comparison of the model output to the fitting dataset and a portion of the validation dataset (Figure S7). The y-axis of each plot is non-dimensionalized concentration; the x-axis is time. The experimental data are plotted as mean values ± s.d. (n = 3 independent experiments), with symbols representing the means and error bars representing the standard deviation (s.d.). The model output is plotted as median values ± CI (n = 10,000 model realizations), with solid lines representing the median and error bands representing the 95% confidence interval (CI).

Supplementary information

Supplementary Information

Supplementary Discussion, Figs. 1–17 and Tables 1–14.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coombs, O.Z., Joo, T., Botelho Junior, A.B. et al. Prototyping and modelling a photovoltaic–thermal electrochemical stripping system for distributed urine nitrogen recovery. Nat Water 3, 913–926 (2025). https://doi.org/10.1038/s44221-025-00477-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44221-025-00477-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing