Abstract
It has been thought that coordination of briefly maintained information (working memory) and social cognition (mentalizing) rely on different brain mechanisms. However, the dorsomedial prefrontal cortex (DMPFC) seems to control the mentalizing and the visual working memory networks. We aimed to show (1) that visual working memory and social cognition share the same neural communication mechanism (i.e., interregional phase-amplitude coupling) and (2) that this mechanism is behaviorally relevant. We analyzed electrical brain activity from 98 volunteers who differed in the extent of (subclinical) autistic personality traits. Participants performed a social, visual and verbal working memory task, each implemented in a low and a high cognitive load version. We analyzed how slow rhythmical brain activity in the DMPFC controls distributed posterior regions associated with working memory and mentalizing via phase-amplitude coupling. First, individuals with low autistic personality traits use slow rhythmical brain activity in the DMPFC to precisely tune communication with posterior brain areas depending on the effort necessary in the visual and social tasks. Second, individuals with high autistic personality traits struggle in fine-tuning this mechanism, which is associated with difficulties in efficiently adapting brain activity to the difficulty level of a visual working memory task; and they demonstrate problems with efficiently synchronizing the relevant cortical network in a social cognition task. While these findings suggest a unified function of brain oscillations in cognitive coordination between social and visual tasks, they could also explain why individuals with high autistic personality traits can have difficulties with demanding cognitive processing and mentalizing.

Similar content being viewed by others
Data availability
The data supporting the findings of this study are made publicly available at the Open Science Framework (https://osf.io/pabfv/)109.
Code availability
The code used in this study are made publicly available at the Open Science Framework (https://osf.io/pabfv/)109.
References
Schilbach, L. Towards a second-person neuropsychiatry. Philos. Trans. R. Soc. Lond. B Biol. Sci. 371, 20150081 (2016).
Spunt, R. P. & Lieberman, M. D. The busy social brain: evidence for automaticity and control in the neural systems supporting social cognition and action understanding. Psychol. Sci. 24, 80–86 (2013).
Van Overwalle, F. Social cognition and the brain: a meta-analysis. Hum. Brain Mapp. 30, 829–858 (2009).
Frith, C. D. & Frith, U. The neural basis of mentalizing. Neuron 50, 531–534 (2006).
Schurz, M., Radua, J., Aichhorn, M., Richlan, F. & Perner, J. Fractionating theory of mind: a meta-analysis of functional brain imaging studies. Neurosci. Biobehav. Rev. 42, 9–34 (2014).
Buckner, R. L., Andrews-Hanna, J. R. & Schacter, D. L. The brain’s default network: anatomy, function, and relevance to disease. Ann. N. Y. Acad. Sci. 1124, 1–38 (2008).
Baddeley, A. Working memory: looking back and looking forward. Nat. Rev. Neurosci. 4, 829–839 (2003).
Anticevic, A., Repovs, G., Shulman, G. L. & Barch, D. M. When less is more: TPJ and default network deactivation during encoding predicts working memory performance. NeuroImage 49, 2638–2648 (2010).
Fox, M. D. et al. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl. Acad. Sci. USA 102, 9673–9678 (2005).
Meyer, M. L., Taylor, S. E. & Lieberman, M. D. Social working memory and its distinctive link to social cognitive ability: an fMRI study. Soc. Cogn. Affect. Neurosci. 10, 1338–1347 (2015).
Meyer, M. L. & Lieberman, M. D. Social working memory: Neurocognitive networks and directions for future research. Front. Psychol. 3, 1–11 (2012).
Meyer, M. L., Spunt, R. P., Berkman, E. T., Taylor, S. E. & Lieberman, M. D. Evidence for social working memory from a parametric functional MRI study. Proc. Natl. Acad. Sci. USA 109, 1883–1888 (2012).
Cavanagh, J. F. & Frank, M. J. Frontal theta as a mechanism for cognitive control. Trends Cogn. Sci. 18, 414–421 (2014).
de Vries, I. E. J., Slagter, H. A. & Olivers, C. N. L. Oscillatory control over representational states in working memory. Trends Cogn. Sci. 24, 150–162 (2020).
Sauseng, P., Tschentscher, N. & Biel, A. L. Be prepared: tune to FM-theta for cognitive control. Trends Neurosci. 42, 307–309 (2019).
Cohen, M. X. A neural microcircuit for cognitive conflict detection and signaling. Trends Neurosci. 37, 480–490 (2014).
Klimesch, W., Freunberger, R. & Sauseng, P. Oscillatory mechanisms of process binding in memory. Neurosci. Biobehav. Rev. 34, 1002–1014 (2010).
Sauseng, P. et al. Theta coupling in the human electroencephalogram during a working memory task. Neurosci. Lett. 354, 123–126 (2004).
Sauseng, P., Klimesch, W., Schabus, M. & Doppelmayr, M. Fronto-parietal EEG coherence in theta and upper alpha reflect central executive functions of working memory. Int. J. Psychophysiol. 57, 97–103 (2005).
Sauseng, P., Griesmayr, B., Freunberger, R. & Klimesch, W. Control mechanisms in working memory: a possible function of EEG theta oscillations. Neurosci. Biobehav. Rev. 34, 1015–1022 (2010).
Canolty, R. T., Edwards, E., Dalal, S. S., Soltani, M. & Nagarajan, S. S. High gamma power is phase-locked to theta oscillations in human neocortex. Science 313, 1626–1628 (2006).
Fries, P. Rhythms for cognition: communication through coherence. Neuron 88, 220–235 (2015).
Berger, B. et al. Dynamic regulation of interregional cortical communication by slow brain oscillations during working memory. Nat. Commun. 10, 1–12 (2019).
Ratcliffe, O., Shapiro, K. & Staresina, B. P. Fronto-medial theta coordinates posterior maintenance of working memory content. Curr. Biol. 32, 2121–2129.e3 (2022).
Honkanen, R., Rouhinen, S., Wang, S. H., Palva, J. M. & Palva, S. Gamma oscillations underlie the maintenance of feature-specific information and the contents of visual working memory. Cereb. Cortex 25, 3788–3801 (2015).
Miller, E. K., Lundqvist, M. & Bastos, A. M. Working memory 2.0. Neuron 100, 463–475 (2018).
Palva, J. M., Monto, S., Kulashekhar, S. & Palva, S. Neuronal synchrony reveals working memory networks and predicts individual memory capacity. Proc. Natl. Acad. Sci. USA 107, 7580–7585 (2010).
Alekseichuk, I., Turi, Z., Amador de Lara, G., Antal, A. & Paulus, W. Spatial working memory in humans depends on theta and high gamma synchronization in the prefrontal cortex. Curr. Biol. 26, 1513–1521 (2016).
Hanslmayr, S., Volberg, G., Wimber, M., Dalal, S. S. & Greenlee, M. W. Prestimulus oscillatory phase at 7 Hz gates cortical information flow and visual perception. Curr. Biol. 23, 2273–2278 (2013).
Voytek, B. et al. Oscillatory dynamics coordinating human frontal networks in support of goal maintenance. Nat. Neurosci. 18, 1318–1324 (2015).
Emch, M., von Bastian, C. C. & Koch, K. Neural correlates of verbal working memory: an fMRI meta-analysis. Front. Hum. Neurosci. 13, 1–17 (2019).
Barbey, A. K., Koenigs, N. & Grafman, J. Dorsolateral prefrontal contributions to human working memory. Cortex 49, 1195–1205 (2013).
Braver, T. S. et al. A parametric study of prefrontal cortex involvement in human working memory. NeuroImage 5, 49–62 (1997).
Osaka, N. et al. Transcranial magnetic stimulation (TMS) applied to left dorsolateral prefrontal cortex disrupts verbal working memory performance in humans. Neurosci. Lett. 418, 232–235 (2007).
Mull, B. R. & Seyal, M. Transcranial magnetic stimulation of left prefrontal cortex impairs working memory. Clin. Neurophysiol. 112, 1672–1675 (2001).
Mottaghy, F. M., Gangitano, M., Sparing, R., Krause, B. J. & Pascual-Leone, A. Segregation of areas related to visual working memory in the prefrontal cortex revealed by rTMS. Cereb. Cortex 12, 369–375 (2002).
Ferrari, C., Vecchi, T., Todorov, A. & Cattaneo, Z. Interfering with activity in the dorsomedial prefrontal cortex via TMS affects social impressions updating. Cogn. Affect. Behav. Neurosci. 16, 626–634 (2016).
Frith, C. D. & Frith, U. Social cognition in humans. Curr. Biol. 17, 724–732 (2007).
Corbetta, M., Patel, G. & Shulman, G. L. The reorienting system of the human brain: from environment to theory of mind. Neuron 58, 306–324 (2008).
Bottema-Beutel, K., Kapp, S. K., Lester, J. N., Sasson, N. J. & Hand, B. N. Avoiding Ableist Language: suggestions for autism researchers. Autism Adulthood 3, 18–29 (2021).
Hamilton, A. & Marsh, L. Two systems for action comprehension in autism: Mirroring and mentalizing. In Understanding Other Minds: Perspectives from developmental social neuroscience (eds Baron-Cohen, S., Tager-Flusberg, M. & Lombardo M.) 380–396. https://doi.org/10.1093/acprof:oso/9780199692972 (2013)
Isaksson, J. et al. Social cognition in autism and other neurodevelopmental disorders: a co-twin control study. J. Autism Dev. Disord. 49, 2838–2848 (2019).
Velikonja, T., Fett, A. K. & Velthorst, E. Patterns of nonsocial and social cognitive functioning in adults with autism spectrum disorder: a systematic review and meta-analysis. JAMA Psychiatry 76, 135–151 (2019).
Habib, A., Harris, L., Pollick, F. & Melville, C. A meta-analysis of working memory in individuals with autism spectrum disorders. PLoS ONE 14, 1–25 (2019).
Barendse, E. M. et al. Working memory deficits in high-functioning adolescents with autism spectrum disorders: neuropsychological and neuroimaging correlates. J. Neurodev. Disord. 5, 14 (2013).
Richmond, L. L., Thorpe, M., Berryhill, M. E., Klugman, J. & Olson, I. R. Individual differences in autistic trait load in the general population predicts visual working memory performance. Q. J. Exp. Psychol. 66, 1182–1195 (2013).
Urbain, C. M., Pang, E. W. & Taylor, M. J. Atypical spatiotemporal signatures of working memory brain processes in autism. Transl. Psychiatry 5, e617–e619 (2015).
Williams, D. M., Jarrold, C., Grainger, C. & Lind, S. E. Diminished time-based, but undiminished event-based, prospective memory among intellectually high-functioning adults with autism spectrum disorder: Relation to working memory ability. Neuropsychology 28, 30–42 (2014).
Xie, R., Sun, X., Yang, L. & Guo, Y. Characteristic executive dysfunction for high-functioning autism sustained to adulthood. Autism Res. 13, 2102–2121 (2020).
Wang, Y. et al. A meta-analysis of working memory impairments in autism spectrum disorders. Neuropsychol. Rev. 27, 46–61 (2017).
Williams, D. L., Goldstein, G., Carpenter, P. A. & Minshew, N. J. Verbal and spatial working memory in autism. J. Autism Dev. Disord. 35, 747–756 (2005).
O’Reilly, C., Lewis, J. D. & Elsabbagh, M. Is functional brain connectivity atypical in autism? A systematic review of EEG and MEG studies. PLoS ONE 12, 1–28 (2017).
Dichter, G. S. Functional magnetic resonance imaging of autism spectrum disorders. Dialogues Clin. Neurosci. 14, 319–351 (2012).
Just, M. A., Keller, T. A., Malave, V. L., Kana, R. K. & Varma, S. Autism as a neural systems disorder. Neurosci. Biobehav. Rev. 36, 1292–1313 (2012).
Larrain-Valenzuela, J. et al. Theta and alpha oscillation impairments in autistic spectrum disorder reflect working memory deficit. Sci. Rep. 7, 1–11 (2017).
Koshino, H. et al. fMRI investigation of working memory for faces in autism: visual coding and underconnectivity with frontal areas. Cerebal Cortex 18, 289–300 (2008).
Audrain, S. P. et al. Frequency-specific neural synchrony in autism during memory encoding, maintenance and recognition. Brain Commun. 2, 1–15 (2020).
Yuk, V., Urbain, C., Anagnostou, E. & Taylor, M. J. Frontoparietal network connectivity during an N-back task in adults with autism spectrum disorder. Front. Psychiatry 11, 1–16 (2020).
Vogan, V. M. et al. The neural correlates of visuo-spatial working memory in children with autism spectrum disorder: effects of cognitive load. J. Neurodev. Disord. 6, 1–15 (2014).
Rahko, J. S. et al. Attention and working memory in adolescents with autism spectrum disorder: a functional MRI study. Child Psychiatry Hum. Dev. 47, 503–517 (2016).
Vogan, V. M., Morgan, B. R., Smith, M., Lou & Taylor, M. J. Functional changes during visuo-spatial working memory in autism spectrum disorder: 2-year longitudinal functional magnetic resonance imaging study. Autism 23, 639–652 (2019).
Barendse, E. M. et al. Working memory network alterations in high-functioning adolescents with an autism spectrum disorder. Psychiatry Clin. Neurosci. 72, 73–83 (2018).
Rowe, A. D., Bullock, P. R., Polkey, C. E. & Morris, R. G. Theory of mind’ impairments and their relationship to executive functioning following frontal lobe excisions. Brain 124, 600–616 (2001).
Apperly, I. A., Samson, D., Chiavarino, C. & Humphreys, G. W. Frontal and temporo-parietal lobe contributions to theory of mind: neuropsychological evidence from a false-belief task with reduced language and executive demands. J. Cogn. Neurosci. 16, 1773–1784 (2004).
Campbell, J. I. D. & Thompson, V. A. MorePower 6.0 for ANOVA with relational confidence intervals and Bayesian analysis. Behav. Res. Methods 44, 1255–1265 (2012).
Lord, C., Elsabbagh, M., Baird, G. & Veenstra-Vanderweele, J. Autism spectrum disorder. Lancet 392, 508–520 (2018).
Rødgaard, E. M., Jensen, K., Vergnes, J. N., Soulières, I. & Mottron, L. Temporal changes in effect sizes of studies comparing individuals with and without autism: a meta-analysis. JAMA Psychiatry 76, 1124–1132 (2019).
Baron-Cohen, S., Wheelwright, S., Skinner, R., Martin, J. & Clubley, E. The autism spectrum quotient: evidence from Asperger syndrome/high functioning autism, males and females, scientists and mathematicians. J. Autism Dev. Disord. 31, 5–17 (2001).
Baron-Cohen, S., Wheelwright, S., Hill, J., Raste, Y. & Plumb, I. The ‘Reading the Mind in the Eyes’ Test revised version: a study with normal adults, and adults with Asperger syndrome or high-functioning autism. J. Child Psychol. Psychiatry 42, 241–251 (2001).
Gebauer, L., Foster, N. E. V., Vuust, P. & Hyde, K. L. Is there a bit of autism in all of us? Autism spectrum traits are related to cortical thickness differences in both autism and typical development. Res. Autism Spectr. Disord. 13–14, 8–14 (2015).
Sevgi, M., Diaconescu, A. O., Tittgemeyer, M. & Schilbach, L. Social Bayes: using Bayesian modeling to study autistic trait–related differences in social cognition. Biol. Psychiatry 80, 112–119 (2016).
Lau, W. Y. P., Peterson, C. C., Attwood, T., Garnett, M. S. & Kelly, A. B. Parents on the autism continuum: links with parenting efficacy. Res. Autism Spectr. Disord. 26, 57–64 (2016).
Sumiyoshi, C., Kawakubo, Y., Suga, M., Sumiyoshi, T. & Kasai, K. Impaired ability to organize information in individuals with autism spectrum disorders and their siblings. Neurosci. Res. 69, 252–257 (2011).
Oldfield, R. C. The assessment and analysis ofhandedness: the Edinburgh inventory. Neuropsychologia 9, 97–113 (1971).
Lehrl, S., Triebig, G. & Fischer, B. Multiple choice vocabulary test MWT as a valid and short test to estimate premorbid intelligence. Acta Neurol. Scand. 91, 335–345 (1995).
Cattell, R. B. & Cattell, A. K. S. Handbook for the individual or group culture fair intelligence test. (Institute for Personality and Ability Testing, Savoy, IL, 1960).
Rammstedt, B. & John, O. P. Kurzversion des Big Five Inventory (BFI-K): Entwicklung und Validierung eines ökonomischen Inventars zur Erfassung der fünf Faktoren der Persönlichkeit. Diagnostica 51, 195–206 (2005).
Meyer, M. L. & Lieberman, M. D. Social working memory training improves perspective-taking accuracy. Soc. Psychol. Personal. Sci. 7, 381–389 (2016).
Grühn, D. & Smith, J. Characteristics for 200 words rated by young and older adults: age-dependent evaluations of German adjectives (AGE). Behav. Res. Methods 40, 1088–1097 (2008).
Mealey, A., Abbott, G., Byrne, L. K. & McGillivray, J. Overlap between autistic and schizotypal personality traits is not accounted for by anxiety and depression. Psychiatry Res. 219, 380–385 (2014).
Freitag, C. M. et al. Evaluation der deutschen Version des Autismus-Spektrum-Quotienten (AQ) - Die kurzversion AQ-k. Z. Klin. Psychol. Psychother. 36, 280–289 (2007).
Woodbury-Smith, M. R., Robinson, J., Wheelwright, S. & Baron-Cohen, S. Screening adults for Asperger Syndrome using the AQ: a preliminary study of its diagnostic validity in clinical practice. J. Autism Dev. Disord. 35, 331–335 (2005).
Mueller-Putz, G., Scherer, R., Brunner, C., Leeb, R. & Pfurtscheller, G. Better than random: a closer look on BCI results. Int. J. Bioelectromagn. 10, 52–55 (2008).
Schmider, E., Ziegler, M., Danay, E., Beyer, L. & Bühner, M. Is it really robust?: Reinvestigating the robustness of ANOVA against violations of the normal distribution assumption. Methodology 6, 147–151 (2010).
Blanca, M. J., Alarcón, R., Arnau, J., Bono, R. & Bendayan, R. Non-normal data: is ANOVA still a valid option? Psicothema 29, 552–557 (2017).
Hemmerich, W. StatistikGuru: Partielles eta2 mit Konfidenzintervall berechnen. https//statistikguru.de/rechner/partielles-eta-mit-konfidenzintervall-berechnen.html (2024).
Hanslmayr, S., Spitzer, B. & Bäuml, K. H. Brain oscillations dissociate between semantic and nonsemantic encoding of episodic memories. Cereb. Cortex 19, 1631–1640 (2009).
Pascual-Marqui, R. D., Michel, C. M. & Lehmann, D. Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. Int. J. Psychophysiol. 18, 49–65 (1994).
Pascual-Marqui, R. D., Esslen, M., Kochi, K. & Lehmann, D. Functional imaging with low-resolution brain electromagnetic tomography (LORETA): a review. Methods Find. Exp. Clin. Pharmacol. 24, 91–95 (2002).
Meyer, M. L. & Collier, E. Theory of minds: managing mental state inferences in working memory is associated with the dorsomedial subsystem of the default network and social integration. Soc. Cogn. Affect. Neurosci. 15, 63–73 (2020).
Todd, J. J. & Marois, R. Capacity limit of visual short-term memory in human posterior parietal cortex. Nature 428, 751–754 (2004).
Donoghue, T. et al. Parameterizing neural power spectra into periodic and aperiodic components. Nat. Neurosci. 23, 1655–1665 (2020).
Pinal, D., Zurrón, M., Díaz, F. & Sauseng, P. Stuck in default mode: Inefficient cross-frequency synchronization may lead to age-related short-term memory decline. Neurobiol. Aging 36, 1611–1618 (2015).
R Core Team, N. a. R: A Language and Environment for Statistical Computing. Vienna, Austria. https://www.R-project.org (2022).
Schmidt, A. F. & Finan, C. Linear regression and the normality assumption. J. Clin. Epidemiol. 98, 146–151 (2018).
Meteyard, L. & Davies, R. A. I. Best practice guidance for linear mixed-effects models in psychological science. J. Mem. Lang. 112, 104092 (2020).
Burnham, K. P. & Anderson, D. R. Multimodel inference: understanding AIC and BIC in model selection. Sociol. Methods Res. 33, 261–304 (2004).
Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer New York, 2016) https://doi.org/10.18637/jss.v035.b01.
Berens, P. CircStat: A MATLAB toolbox for circular statistics. J. Stat. Softw. 31, 1–21 (2009).
Bonett, D. G. & Wright, T. A. Sample size requirements for estimating Pearson, Kendall and Spearman correlations. Psychometrika 65, 23–28 (2000).
Lenhard, W. & Lenhard, A. Signifikanztests bei Korrelationen. Psychom. - https//www.psychometrica.de/korrelation.html (2014) https://doi.org/10.13140/RG.2.1.2954.1367.
Cole, S. R. & Voytek, B. Brain oscillations and the importance of waveform shape. Trends Cogn. Sci. 21, 137–149 (2017).
Lozano-Soldevilla, D., Huurne, N. & Oostenveld, R. Neuronal oscillations with non-sinusoidal morphology produce spurious phase-to-amplitude coupling and directionality. Front. Comput. Neurosci. 10, 1–17 (2016).
Van Overwalle, F. A dissociation between social mentalizing and general reasoning. NeuroImage 54, 1589–1599 (2011).
Vogan, V. M. et al. Load matters: neural correlates of verbal working memory in children with autism spectrum disorder. J. Neurodev. Disord. 10, 1–12 (2018).
Van Snellenberg, J. X. et al. Dynamic shifts in brain network activation during supracapacity working memory task performance. Hum. Brain Mapp. 36, 1245–1264 (2015).
Hill, A. T., Van Der Elst, J., Bigelow, F. J., Lum, J. A. G. & Enticott, P. G. Right anterior theta connectivity predicts autistic social traits in typically developing children. Biol. Psychol. 175, 108448 (2022).
Griesmayr, B. et al. EEG theta phase coupling during executive control of visual working memory investigated in individuals with schizophrenia and in healthy controls. Cogn. Affect. Behav. Neurosci. 14, 1340–1355 (2014).
Friedrich, E. V. C., Hilla, Y., & Sauseng, P. Theta-gamma phase amplitude coupling serves as a marker of social cognition and visual working memory deficits in individuals with elevated autistic traits. https://doi.org/10.17605/OSF.IO/PABFV (2025)
Pascual-Marqui, R. D. Standardized low resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find. Exp. Clin. Pharmacol. 24Suppl. D, 5–12 (2002).
Acknowledgements
We thank Doris Schmid for support with programming and piloting the experimental design and Daniela Gresch for support with EEG data preprocessing. We are very grateful for the many valuable discussions with Anna Lena Biel and Carola Romberg-Taylor in order to design the experimental tasks. We give our special thanks to Jörg von Mankowski for providing tools to optimize our experimental design and advice during the complex analyses. We thank Eva Victoria Seegenschmiedt, Nele Habrecht and Ashley Yuan for assisting in designing the social questionnaire and the experimental tasks. This study was funded by a DFG grant to E.V.C.F. (FR 3961/1-1) and a SNSF Grant (10531F_220081) to P.S. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.
Author information
Authors and Affiliations
Contributions
Conceptualization: E.V.C.F., P.S., Y.H.; Methodology: E.V.C.F., Y.H., P.S.; Software: E.V.C.F., Y.H., P.S.; Validation: E.V.C.F., Y.H., P.S.; Formal analysis: E.V.C.F., Y.H., P.S.; Investigation: E.V.C.F., Y.H., E.F.S., S.S.O., L.B.; Data curation and preprocessing: E.V.C.F., Y.H., L.B., E.F.S., S.S.O.; Resources: P.S., E.V.C.F.; Writing – original draft: E.V.C.F., Y.H., P.S.; Writing – review & editing: E.V.C.F., Y.H., P.S.; Visualization: E.V.C.F., Y.H., P.S.; Supervision: P.S., E.V.C.F.; Project administration: E.V.C.F.; Funding acquisition: E.V.C.F., P.S.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Communications Psychology thanks Dashiell Sacks, Josefina Larraín-Valenzuela and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editors: Troby Ka-Yan Lui. A peer review file is available.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Friedrich, E.V.C., Hilla, Y., Sterner, E.F. et al. Theta-gamma phase amplitude coupling serves as a marker of social cognition and visual working memory deficits in individuals with elevated autistic traits. Commun Psychol (2026). https://doi.org/10.1038/s44271-025-00392-6
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s44271-025-00392-6


