Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Communications Psychology
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. communications psychology
  3. articles
  4. article
Theta-gamma phase amplitude coupling serves as a marker of social cognition and visual working memory deficits in individuals with elevated autistic traits
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 14 January 2026

Theta-gamma phase amplitude coupling serves as a marker of social cognition and visual working memory deficits in individuals with elevated autistic traits

  • Elisabeth V. C. Friedrich  ORCID: orcid.org/0000-0002-9267-156X1,2,3,
  • Yannik Hilla  ORCID: orcid.org/0000-0002-4870-70513,4,
  • Elisabeth F. Sterner2,5,
  • Simon S. Ostermeier2,
  • Larissa Behnke  ORCID: orcid.org/0009-0003-1593-46153,6 &
  • …
  • Paul Sauseng3,6 

Communications Psychology , Article number:  (2026) Cite this article

  • 1671 Accesses

  • 19 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Cognitive control
  • Psychology
  • Social behaviour
  • Social neuroscience

Abstract

It has been thought that coordination of briefly maintained information (working memory) and social cognition (mentalizing) rely on different brain mechanisms. However, the dorsomedial prefrontal cortex (DMPFC) seems to control the mentalizing and the visual working memory networks. We aimed to show (1) that visual working memory and social cognition share the same neural communication mechanism (i.e., interregional phase-amplitude coupling) and (2) that this mechanism is behaviorally relevant. We analyzed electrical brain activity from 98 volunteers who differed in the extent of (subclinical) autistic personality traits. Participants performed a social, visual and verbal working memory task, each implemented in a low and a high cognitive load version. We analyzed how slow rhythmical brain activity in the DMPFC controls distributed posterior regions associated with working memory and mentalizing via phase-amplitude coupling. First, individuals with low autistic personality traits use slow rhythmical brain activity in the DMPFC to precisely tune communication with posterior brain areas depending on the effort necessary in the visual and social tasks. Second, individuals with high autistic personality traits struggle in fine-tuning this mechanism, which is associated with difficulties in efficiently adapting brain activity to the difficulty level of a visual working memory task; and they demonstrate problems with efficiently synchronizing the relevant cortical network in a social cognition task. While these findings suggest a unified function of brain oscillations in cognitive coordination between social and visual tasks, they could also explain why individuals with high autistic personality traits can have difficulties with demanding cognitive processing and mentalizing.

Similar content being viewed by others

Observational learning strategies impact the neural correlates of declarative memory formation

Article Open access 14 October 2025

Sensory stimulation enhances visual working memory capacity

Article Open access 18 November 2024

Associations between fMRI signal amplitude, hemispheric asymmetry, and task performance

Article Open access 08 October 2025

Data availability

The data supporting the findings of this study are made publicly available at the Open Science Framework (https://osf.io/pabfv/)109.

Code availability

The code used in this study are made publicly available at the Open Science Framework (https://osf.io/pabfv/)109.

References

  1. Schilbach, L. Towards a second-person neuropsychiatry. Philos. Trans. R. Soc. Lond. B Biol. Sci. 371, 20150081 (2016).

    Google Scholar 

  2. Spunt, R. P. & Lieberman, M. D. The busy social brain: evidence for automaticity and control in the neural systems supporting social cognition and action understanding. Psychol. Sci. 24, 80–86 (2013).

    Google Scholar 

  3. Van Overwalle, F. Social cognition and the brain: a meta-analysis. Hum. Brain Mapp. 30, 829–858 (2009).

    Google Scholar 

  4. Frith, C. D. & Frith, U. The neural basis of mentalizing. Neuron 50, 531–534 (2006).

    Google Scholar 

  5. Schurz, M., Radua, J., Aichhorn, M., Richlan, F. & Perner, J. Fractionating theory of mind: a meta-analysis of functional brain imaging studies. Neurosci. Biobehav. Rev. 42, 9–34 (2014).

    Google Scholar 

  6. Buckner, R. L., Andrews-Hanna, J. R. & Schacter, D. L. The brain’s default network: anatomy, function, and relevance to disease. Ann. N. Y. Acad. Sci. 1124, 1–38 (2008).

    Google Scholar 

  7. Baddeley, A. Working memory: looking back and looking forward. Nat. Rev. Neurosci. 4, 829–839 (2003).

    Google Scholar 

  8. Anticevic, A., Repovs, G., Shulman, G. L. & Barch, D. M. When less is more: TPJ and default network deactivation during encoding predicts working memory performance. NeuroImage 49, 2638–2648 (2010).

    Google Scholar 

  9. Fox, M. D. et al. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl. Acad. Sci. USA 102, 9673–9678 (2005).

    Google Scholar 

  10. Meyer, M. L., Taylor, S. E. & Lieberman, M. D. Social working memory and its distinctive link to social cognitive ability: an fMRI study. Soc. Cogn. Affect. Neurosci. 10, 1338–1347 (2015).

    Google Scholar 

  11. Meyer, M. L. & Lieberman, M. D. Social working memory: Neurocognitive networks and directions for future research. Front. Psychol. 3, 1–11 (2012).

    Google Scholar 

  12. Meyer, M. L., Spunt, R. P., Berkman, E. T., Taylor, S. E. & Lieberman, M. D. Evidence for social working memory from a parametric functional MRI study. Proc. Natl. Acad. Sci. USA 109, 1883–1888 (2012).

    Google Scholar 

  13. Cavanagh, J. F. & Frank, M. J. Frontal theta as a mechanism for cognitive control. Trends Cogn. Sci. 18, 414–421 (2014).

    Google Scholar 

  14. de Vries, I. E. J., Slagter, H. A. & Olivers, C. N. L. Oscillatory control over representational states in working memory. Trends Cogn. Sci. 24, 150–162 (2020).

    Google Scholar 

  15. Sauseng, P., Tschentscher, N. & Biel, A. L. Be prepared: tune to FM-theta for cognitive control. Trends Neurosci. 42, 307–309 (2019).

    Google Scholar 

  16. Cohen, M. X. A neural microcircuit for cognitive conflict detection and signaling. Trends Neurosci. 37, 480–490 (2014).

    Google Scholar 

  17. Klimesch, W., Freunberger, R. & Sauseng, P. Oscillatory mechanisms of process binding in memory. Neurosci. Biobehav. Rev. 34, 1002–1014 (2010).

    Google Scholar 

  18. Sauseng, P. et al. Theta coupling in the human electroencephalogram during a working memory task. Neurosci. Lett. 354, 123–126 (2004).

    Google Scholar 

  19. Sauseng, P., Klimesch, W., Schabus, M. & Doppelmayr, M. Fronto-parietal EEG coherence in theta and upper alpha reflect central executive functions of working memory. Int. J. Psychophysiol. 57, 97–103 (2005).

    Google Scholar 

  20. Sauseng, P., Griesmayr, B., Freunberger, R. & Klimesch, W. Control mechanisms in working memory: a possible function of EEG theta oscillations. Neurosci. Biobehav. Rev. 34, 1015–1022 (2010).

    Google Scholar 

  21. Canolty, R. T., Edwards, E., Dalal, S. S., Soltani, M. & Nagarajan, S. S. High gamma power is phase-locked to theta oscillations in human neocortex. Science 313, 1626–1628 (2006).

    Google Scholar 

  22. Fries, P. Rhythms for cognition: communication through coherence. Neuron 88, 220–235 (2015).

    Google Scholar 

  23. Berger, B. et al. Dynamic regulation of interregional cortical communication by slow brain oscillations during working memory. Nat. Commun. 10, 1–12 (2019).

    Google Scholar 

  24. Ratcliffe, O., Shapiro, K. & Staresina, B. P. Fronto-medial theta coordinates posterior maintenance of working memory content. Curr. Biol. 32, 2121–2129.e3 (2022).

    Google Scholar 

  25. Honkanen, R., Rouhinen, S., Wang, S. H., Palva, J. M. & Palva, S. Gamma oscillations underlie the maintenance of feature-specific information and the contents of visual working memory. Cereb. Cortex 25, 3788–3801 (2015).

    Google Scholar 

  26. Miller, E. K., Lundqvist, M. & Bastos, A. M. Working memory 2.0. Neuron 100, 463–475 (2018).

    Google Scholar 

  27. Palva, J. M., Monto, S., Kulashekhar, S. & Palva, S. Neuronal synchrony reveals working memory networks and predicts individual memory capacity. Proc. Natl. Acad. Sci. USA 107, 7580–7585 (2010).

    Google Scholar 

  28. Alekseichuk, I., Turi, Z., Amador de Lara, G., Antal, A. & Paulus, W. Spatial working memory in humans depends on theta and high gamma synchronization in the prefrontal cortex. Curr. Biol. 26, 1513–1521 (2016).

    Google Scholar 

  29. Hanslmayr, S., Volberg, G., Wimber, M., Dalal, S. S. & Greenlee, M. W. Prestimulus oscillatory phase at 7 Hz gates cortical information flow and visual perception. Curr. Biol. 23, 2273–2278 (2013).

    Google Scholar 

  30. Voytek, B. et al. Oscillatory dynamics coordinating human frontal networks in support of goal maintenance. Nat. Neurosci. 18, 1318–1324 (2015).

    Google Scholar 

  31. Emch, M., von Bastian, C. C. & Koch, K. Neural correlates of verbal working memory: an fMRI meta-analysis. Front. Hum. Neurosci. 13, 1–17 (2019).

    Google Scholar 

  32. Barbey, A. K., Koenigs, N. & Grafman, J. Dorsolateral prefrontal contributions to human working memory. Cortex 49, 1195–1205 (2013).

    Google Scholar 

  33. Braver, T. S. et al. A parametric study of prefrontal cortex involvement in human working memory. NeuroImage 5, 49–62 (1997).

    Google Scholar 

  34. Osaka, N. et al. Transcranial magnetic stimulation (TMS) applied to left dorsolateral prefrontal cortex disrupts verbal working memory performance in humans. Neurosci. Lett. 418, 232–235 (2007).

    Google Scholar 

  35. Mull, B. R. & Seyal, M. Transcranial magnetic stimulation of left prefrontal cortex impairs working memory. Clin. Neurophysiol. 112, 1672–1675 (2001).

    Google Scholar 

  36. Mottaghy, F. M., Gangitano, M., Sparing, R., Krause, B. J. & Pascual-Leone, A. Segregation of areas related to visual working memory in the prefrontal cortex revealed by rTMS. Cereb. Cortex 12, 369–375 (2002).

    Google Scholar 

  37. Ferrari, C., Vecchi, T., Todorov, A. & Cattaneo, Z. Interfering with activity in the dorsomedial prefrontal cortex via TMS affects social impressions updating. Cogn. Affect. Behav. Neurosci. 16, 626–634 (2016).

    Google Scholar 

  38. Frith, C. D. & Frith, U. Social cognition in humans. Curr. Biol. 17, 724–732 (2007).

    Google Scholar 

  39. Corbetta, M., Patel, G. & Shulman, G. L. The reorienting system of the human brain: from environment to theory of mind. Neuron 58, 306–324 (2008).

    Google Scholar 

  40. Bottema-Beutel, K., Kapp, S. K., Lester, J. N., Sasson, N. J. & Hand, B. N. Avoiding Ableist Language: suggestions for autism researchers. Autism Adulthood 3, 18–29 (2021).

    Google Scholar 

  41. Hamilton, A. & Marsh, L. Two systems for action comprehension in autism: Mirroring and mentalizing. In Understanding Other Minds: Perspectives from developmental social neuroscience (eds Baron-Cohen, S., Tager-Flusberg, M. & Lombardo M.) 380–396. https://doi.org/10.1093/acprof:oso/9780199692972 (2013)

  42. Isaksson, J. et al. Social cognition in autism and other neurodevelopmental disorders: a co-twin control study. J. Autism Dev. Disord. 49, 2838–2848 (2019).

    Google Scholar 

  43. Velikonja, T., Fett, A. K. & Velthorst, E. Patterns of nonsocial and social cognitive functioning in adults with autism spectrum disorder: a systematic review and meta-analysis. JAMA Psychiatry 76, 135–151 (2019).

    Google Scholar 

  44. Habib, A., Harris, L., Pollick, F. & Melville, C. A meta-analysis of working memory in individuals with autism spectrum disorders. PLoS ONE 14, 1–25 (2019).

    Google Scholar 

  45. Barendse, E. M. et al. Working memory deficits in high-functioning adolescents with autism spectrum disorders: neuropsychological and neuroimaging correlates. J. Neurodev. Disord. 5, 14 (2013).

    Google Scholar 

  46. Richmond, L. L., Thorpe, M., Berryhill, M. E., Klugman, J. & Olson, I. R. Individual differences in autistic trait load in the general population predicts visual working memory performance. Q. J. Exp. Psychol. 66, 1182–1195 (2013).

    Google Scholar 

  47. Urbain, C. M., Pang, E. W. & Taylor, M. J. Atypical spatiotemporal signatures of working memory brain processes in autism. Transl. Psychiatry 5, e617–e619 (2015).

    Google Scholar 

  48. Williams, D. M., Jarrold, C., Grainger, C. & Lind, S. E. Diminished time-based, but undiminished event-based, prospective memory among intellectually high-functioning adults with autism spectrum disorder: Relation to working memory ability. Neuropsychology 28, 30–42 (2014).

    Google Scholar 

  49. Xie, R., Sun, X., Yang, L. & Guo, Y. Characteristic executive dysfunction for high-functioning autism sustained to adulthood. Autism Res. 13, 2102–2121 (2020).

    Google Scholar 

  50. Wang, Y. et al. A meta-analysis of working memory impairments in autism spectrum disorders. Neuropsychol. Rev. 27, 46–61 (2017).

    Google Scholar 

  51. Williams, D. L., Goldstein, G., Carpenter, P. A. & Minshew, N. J. Verbal and spatial working memory in autism. J. Autism Dev. Disord. 35, 747–756 (2005).

    Google Scholar 

  52. O’Reilly, C., Lewis, J. D. & Elsabbagh, M. Is functional brain connectivity atypical in autism? A systematic review of EEG and MEG studies. PLoS ONE 12, 1–28 (2017).

    Google Scholar 

  53. Dichter, G. S. Functional magnetic resonance imaging of autism spectrum disorders. Dialogues Clin. Neurosci. 14, 319–351 (2012).

    Google Scholar 

  54. Just, M. A., Keller, T. A., Malave, V. L., Kana, R. K. & Varma, S. Autism as a neural systems disorder. Neurosci. Biobehav. Rev. 36, 1292–1313 (2012).

    Google Scholar 

  55. Larrain-Valenzuela, J. et al. Theta and alpha oscillation impairments in autistic spectrum disorder reflect working memory deficit. Sci. Rep. 7, 1–11 (2017).

    Google Scholar 

  56. Koshino, H. et al. fMRI investigation of working memory for faces in autism: visual coding and underconnectivity with frontal areas. Cerebal Cortex 18, 289–300 (2008).

    Google Scholar 

  57. Audrain, S. P. et al. Frequency-specific neural synchrony in autism during memory encoding, maintenance and recognition. Brain Commun. 2, 1–15 (2020).

    Google Scholar 

  58. Yuk, V., Urbain, C., Anagnostou, E. & Taylor, M. J. Frontoparietal network connectivity during an N-back task in adults with autism spectrum disorder. Front. Psychiatry 11, 1–16 (2020).

    Google Scholar 

  59. Vogan, V. M. et al. The neural correlates of visuo-spatial working memory in children with autism spectrum disorder: effects of cognitive load. J. Neurodev. Disord. 6, 1–15 (2014).

    Google Scholar 

  60. Rahko, J. S. et al. Attention and working memory in adolescents with autism spectrum disorder: a functional MRI study. Child Psychiatry Hum. Dev. 47, 503–517 (2016).

    Google Scholar 

  61. Vogan, V. M., Morgan, B. R., Smith, M., Lou & Taylor, M. J. Functional changes during visuo-spatial working memory in autism spectrum disorder: 2-year longitudinal functional magnetic resonance imaging study. Autism 23, 639–652 (2019).

    Google Scholar 

  62. Barendse, E. M. et al. Working memory network alterations in high-functioning adolescents with an autism spectrum disorder. Psychiatry Clin. Neurosci. 72, 73–83 (2018).

    Google Scholar 

  63. Rowe, A. D., Bullock, P. R., Polkey, C. E. & Morris, R. G. Theory of mind’ impairments and their relationship to executive functioning following frontal lobe excisions. Brain 124, 600–616 (2001).

    Google Scholar 

  64. Apperly, I. A., Samson, D., Chiavarino, C. & Humphreys, G. W. Frontal and temporo-parietal lobe contributions to theory of mind: neuropsychological evidence from a false-belief task with reduced language and executive demands. J. Cogn. Neurosci. 16, 1773–1784 (2004).

    Google Scholar 

  65. Campbell, J. I. D. & Thompson, V. A. MorePower 6.0 for ANOVA with relational confidence intervals and Bayesian analysis. Behav. Res. Methods 44, 1255–1265 (2012).

    Google Scholar 

  66. Lord, C., Elsabbagh, M., Baird, G. & Veenstra-Vanderweele, J. Autism spectrum disorder. Lancet 392, 508–520 (2018).

    Google Scholar 

  67. Rødgaard, E. M., Jensen, K., Vergnes, J. N., Soulières, I. & Mottron, L. Temporal changes in effect sizes of studies comparing individuals with and without autism: a meta-analysis. JAMA Psychiatry 76, 1124–1132 (2019).

    Google Scholar 

  68. Baron-Cohen, S., Wheelwright, S., Skinner, R., Martin, J. & Clubley, E. The autism spectrum quotient: evidence from Asperger syndrome/high functioning autism, males and females, scientists and mathematicians. J. Autism Dev. Disord. 31, 5–17 (2001).

    Google Scholar 

  69. Baron-Cohen, S., Wheelwright, S., Hill, J., Raste, Y. & Plumb, I. The ‘Reading the Mind in the Eyes’ Test revised version: a study with normal adults, and adults with Asperger syndrome or high-functioning autism. J. Child Psychol. Psychiatry 42, 241–251 (2001).

    Google Scholar 

  70. Gebauer, L., Foster, N. E. V., Vuust, P. & Hyde, K. L. Is there a bit of autism in all of us? Autism spectrum traits are related to cortical thickness differences in both autism and typical development. Res. Autism Spectr. Disord. 13–14, 8–14 (2015).

    Google Scholar 

  71. Sevgi, M., Diaconescu, A. O., Tittgemeyer, M. & Schilbach, L. Social Bayes: using Bayesian modeling to study autistic trait–related differences in social cognition. Biol. Psychiatry 80, 112–119 (2016).

    Google Scholar 

  72. Lau, W. Y. P., Peterson, C. C., Attwood, T., Garnett, M. S. & Kelly, A. B. Parents on the autism continuum: links with parenting efficacy. Res. Autism Spectr. Disord. 26, 57–64 (2016).

    Google Scholar 

  73. Sumiyoshi, C., Kawakubo, Y., Suga, M., Sumiyoshi, T. & Kasai, K. Impaired ability to organize information in individuals with autism spectrum disorders and their siblings. Neurosci. Res. 69, 252–257 (2011).

    Google Scholar 

  74. Oldfield, R. C. The assessment and analysis ofhandedness: the Edinburgh inventory. Neuropsychologia 9, 97–113 (1971).

    Google Scholar 

  75. Lehrl, S., Triebig, G. & Fischer, B. Multiple choice vocabulary test MWT as a valid and short test to estimate premorbid intelligence. Acta Neurol. Scand. 91, 335–345 (1995).

    Google Scholar 

  76. Cattell, R. B. & Cattell, A. K. S. Handbook for the individual or group culture fair intelligence test. (Institute for Personality and Ability Testing, Savoy, IL, 1960).

  77. Rammstedt, B. & John, O. P. Kurzversion des Big Five Inventory (BFI-K): Entwicklung und Validierung eines ökonomischen Inventars zur Erfassung der fünf Faktoren der Persönlichkeit. Diagnostica 51, 195–206 (2005).

    Google Scholar 

  78. Meyer, M. L. & Lieberman, M. D. Social working memory training improves perspective-taking accuracy. Soc. Psychol. Personal. Sci. 7, 381–389 (2016).

    Google Scholar 

  79. Grühn, D. & Smith, J. Characteristics for 200 words rated by young and older adults: age-dependent evaluations of German adjectives (AGE). Behav. Res. Methods 40, 1088–1097 (2008).

    Google Scholar 

  80. Mealey, A., Abbott, G., Byrne, L. K. & McGillivray, J. Overlap between autistic and schizotypal personality traits is not accounted for by anxiety and depression. Psychiatry Res. 219, 380–385 (2014).

    Google Scholar 

  81. Freitag, C. M. et al. Evaluation der deutschen Version des Autismus-Spektrum-Quotienten (AQ) - Die kurzversion AQ-k. Z. Klin. Psychol. Psychother. 36, 280–289 (2007).

    Google Scholar 

  82. Woodbury-Smith, M. R., Robinson, J., Wheelwright, S. & Baron-Cohen, S. Screening adults for Asperger Syndrome using the AQ: a preliminary study of its diagnostic validity in clinical practice. J. Autism Dev. Disord. 35, 331–335 (2005).

    Google Scholar 

  83. Mueller-Putz, G., Scherer, R., Brunner, C., Leeb, R. & Pfurtscheller, G. Better than random: a closer look on BCI results. Int. J. Bioelectromagn. 10, 52–55 (2008).

    Google Scholar 

  84. Schmider, E., Ziegler, M., Danay, E., Beyer, L. & Bühner, M. Is it really robust?: Reinvestigating the robustness of ANOVA against violations of the normal distribution assumption. Methodology 6, 147–151 (2010).

    Google Scholar 

  85. Blanca, M. J., Alarcón, R., Arnau, J., Bono, R. & Bendayan, R. Non-normal data: is ANOVA still a valid option? Psicothema 29, 552–557 (2017).

    Google Scholar 

  86. Hemmerich, W. StatistikGuru: Partielles eta2 mit Konfidenzintervall berechnen. https//statistikguru.de/rechner/partielles-eta-mit-konfidenzintervall-berechnen.html (2024).

  87. Hanslmayr, S., Spitzer, B. & Bäuml, K. H. Brain oscillations dissociate between semantic and nonsemantic encoding of episodic memories. Cereb. Cortex 19, 1631–1640 (2009).

    Google Scholar 

  88. Pascual-Marqui, R. D., Michel, C. M. & Lehmann, D. Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. Int. J. Psychophysiol. 18, 49–65 (1994).

    Google Scholar 

  89. Pascual-Marqui, R. D., Esslen, M., Kochi, K. & Lehmann, D. Functional imaging with low-resolution brain electromagnetic tomography (LORETA): a review. Methods Find. Exp. Clin. Pharmacol. 24, 91–95 (2002).

    Google Scholar 

  90. Meyer, M. L. & Collier, E. Theory of minds: managing mental state inferences in working memory is associated with the dorsomedial subsystem of the default network and social integration. Soc. Cogn. Affect. Neurosci. 15, 63–73 (2020).

    Google Scholar 

  91. Todd, J. J. & Marois, R. Capacity limit of visual short-term memory in human posterior parietal cortex. Nature 428, 751–754 (2004).

    Google Scholar 

  92. Donoghue, T. et al. Parameterizing neural power spectra into periodic and aperiodic components. Nat. Neurosci. 23, 1655–1665 (2020).

    Google Scholar 

  93. Pinal, D., Zurrón, M., Díaz, F. & Sauseng, P. Stuck in default mode: Inefficient cross-frequency synchronization may lead to age-related short-term memory decline. Neurobiol. Aging 36, 1611–1618 (2015).

    Google Scholar 

  94. R Core Team, N. a. R: A Language and Environment for Statistical Computing. Vienna, Austria. https://www.R-project.org (2022).

  95. Schmidt, A. F. & Finan, C. Linear regression and the normality assumption. J. Clin. Epidemiol. 98, 146–151 (2018).

    Google Scholar 

  96. Meteyard, L. & Davies, R. A. I. Best practice guidance for linear mixed-effects models in psychological science. J. Mem. Lang. 112, 104092 (2020).

  97. Burnham, K. P. & Anderson, D. R. Multimodel inference: understanding AIC and BIC in model selection. Sociol. Methods Res. 33, 261–304 (2004).

    Google Scholar 

  98. Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer New York, 2016) https://doi.org/10.18637/jss.v035.b01.

  99. Berens, P. CircStat: A MATLAB toolbox for circular statistics. J. Stat. Softw. 31, 1–21 (2009).

    Google Scholar 

  100. Bonett, D. G. & Wright, T. A. Sample size requirements for estimating Pearson, Kendall and Spearman correlations. Psychometrika 65, 23–28 (2000).

    Google Scholar 

  101. Lenhard, W. & Lenhard, A. Signifikanztests bei Korrelationen. Psychom. - https//www.psychometrica.de/korrelation.html (2014) https://doi.org/10.13140/RG.2.1.2954.1367.

  102. Cole, S. R. & Voytek, B. Brain oscillations and the importance of waveform shape. Trends Cogn. Sci. 21, 137–149 (2017).

    Google Scholar 

  103. Lozano-Soldevilla, D., Huurne, N. & Oostenveld, R. Neuronal oscillations with non-sinusoidal morphology produce spurious phase-to-amplitude coupling and directionality. Front. Comput. Neurosci. 10, 1–17 (2016).

    Google Scholar 

  104. Van Overwalle, F. A dissociation between social mentalizing and general reasoning. NeuroImage 54, 1589–1599 (2011).

    Google Scholar 

  105. Vogan, V. M. et al. Load matters: neural correlates of verbal working memory in children with autism spectrum disorder. J. Neurodev. Disord. 10, 1–12 (2018).

    Google Scholar 

  106. Van Snellenberg, J. X. et al. Dynamic shifts in brain network activation during supracapacity working memory task performance. Hum. Brain Mapp. 36, 1245–1264 (2015).

    Google Scholar 

  107. Hill, A. T., Van Der Elst, J., Bigelow, F. J., Lum, J. A. G. & Enticott, P. G. Right anterior theta connectivity predicts autistic social traits in typically developing children. Biol. Psychol. 175, 108448 (2022).

    Google Scholar 

  108. Griesmayr, B. et al. EEG theta phase coupling during executive control of visual working memory investigated in individuals with schizophrenia and in healthy controls. Cogn. Affect. Behav. Neurosci. 14, 1340–1355 (2014).

    Google Scholar 

  109. Friedrich, E. V. C., Hilla, Y., & Sauseng, P. Theta-gamma phase amplitude coupling serves as a marker of social cognition and visual working memory deficits in individuals with elevated autistic traits. https://doi.org/10.17605/OSF.IO/PABFV (2025)

  110. Pascual-Marqui, R. D. Standardized low resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find. Exp. Clin. Pharmacol. 24Suppl. D, 5–12 (2002).

Download references

Acknowledgements

We thank Doris Schmid for support with programming and piloting the experimental design and Daniela Gresch for support with EEG data preprocessing. We are very grateful for the many valuable discussions with Anna Lena Biel and Carola Romberg-Taylor in order to design the experimental tasks. We give our special thanks to Jörg von Mankowski for providing tools to optimize our experimental design and advice during the complex analyses. We thank Eva Victoria Seegenschmiedt, Nele Habrecht and Ashley Yuan for assisting in designing the social questionnaire and the experimental tasks. This study was funded by a DFG grant to E.V.C.F. (FR 3961/1-1) and a SNSF Grant (10531F_220081) to P.S. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

  1. Faculty of Psychology, University of Sustainability Vienna – Charlotte Fresenius Privatuniversität, Vienna, Austria

    Elisabeth V. C. Friedrich

  2. Department of Psychology, Ludwig-Maximilians-Universität München, Munich, Germany

    Elisabeth V. C. Friedrich, Elisabeth F. Sterner & Simon S. Ostermeier

  3. Department of Psychology, Neuropsychology and Cognitive Neuroscience Unit, University of Zurich, Zurich, Switzerland

    Elisabeth V. C. Friedrich, Yannik Hilla, Larissa Behnke & Paul Sauseng

  4. Department of Human Sciences, Institute of Psychology, University of the Bundeswehr Munich, Neubiberg, Germany

    Yannik Hilla

  5. Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany

    Elisabeth F. Sterner

  6. Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland

    Larissa Behnke & Paul Sauseng

Authors
  1. Elisabeth V. C. Friedrich
    View author publications

    Search author on:PubMed Google Scholar

  2. Yannik Hilla
    View author publications

    Search author on:PubMed Google Scholar

  3. Elisabeth F. Sterner
    View author publications

    Search author on:PubMed Google Scholar

  4. Simon S. Ostermeier
    View author publications

    Search author on:PubMed Google Scholar

  5. Larissa Behnke
    View author publications

    Search author on:PubMed Google Scholar

  6. Paul Sauseng
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Conceptualization: E.V.C.F., P.S., Y.H.; Methodology: E.V.C.F., Y.H., P.S.; Software: E.V.C.F., Y.H., P.S.; Validation: E.V.C.F., Y.H., P.S.; Formal analysis: E.V.C.F., Y.H., P.S.; Investigation: E.V.C.F., Y.H., E.F.S., S.S.O., L.B.; Data curation and preprocessing: E.V.C.F., Y.H., L.B., E.F.S., S.S.O.; Resources: P.S., E.V.C.F.; Writing – original draft: E.V.C.F., Y.H., P.S.; Writing – review & editing: E.V.C.F., Y.H., P.S.; Visualization: E.V.C.F., Y.H., P.S.; Supervision: P.S., E.V.C.F.; Project administration: E.V.C.F.; Funding acquisition: E.V.C.F., P.S.

Corresponding authors

Correspondence to Elisabeth V. C. Friedrich or Yannik Hilla.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Communications Psychology thanks Dashiell Sacks, Josefina Larraín-Valenzuela and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editors: Troby Ka-Yan Lui. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Transparent Peer Review file

Supplementary Information

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Friedrich, E.V.C., Hilla, Y., Sterner, E.F. et al. Theta-gamma phase amplitude coupling serves as a marker of social cognition and visual working memory deficits in individuals with elevated autistic traits. Commun Psychol (2026). https://doi.org/10.1038/s44271-025-00392-6

Download citation

  • Received: 23 December 2024

  • Accepted: 19 December 2025

  • Published: 14 January 2026

  • DOI: https://doi.org/10.1038/s44271-025-00392-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Associated content

Collection

Rhythmic Cognition

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Journal Information
  • Editors
  • Editorial Board
  • Open Access
  • Journal Metrics
  • Calls for Papers
  • Referees
  • Article Processing Charges
  • Contact
  • Editorial policies
  • Conferences
  • Editorial Values Statement

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Communications Psychology (Commun Psychol)

ISSN 2731-9121 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing