Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Regulation of humid heat by urban green space across a climate wetness gradient

Abstract

Green spaces are a common strategy for adaptation to urban warming. Whereas they have been demonstrated to reduce air temperature, much less is known about their effect on air humidity. Because human heat stress is contributed by both temperature and humidity, it is important to quantify the relationship between the effects of both. Here, using mobile measurements in 15 cities, we show that the daytime temperature effect is negatively correlated with the humidity effect, resulting in an insignificant change in the wet-bulb temperature Tw or humid heat (daytime Tw difference between green space and built-up area ΔTw = −0.01 °C). A net reduction in humid heat was observed at night in intermediate (summer precipitation 180 to 570 mm) and wet climates (summer precipitation > 570 mm; mean ΔTw = −0.35 °C). A model simulation revealed that the nighttime Tw reduction resulted mostly from reduction in soil heat storage in vegetated land. These nuanced microclimate responses to urban vegetation caution against a one-size-fits-all solution to climate adaptation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Effects of urban green space on air temperature, humidity and wet-bulb temperature in intermediate-wetness climate.
Fig. 2: Daytime microclimatic effects of urban green space across the climate wetness gradient.
Fig. 3: Relationship between temperature and humidity effects of urban green space.
Fig. 4: Attribution of vegetation effect on the wet-bulb temperature Tw.

Similar content being viewed by others

Data availability

The satellite NDVI data are available at https://scihub.copernicus.eu/dhus/#/home. The global land cover data (FROM-GLC) are available at http://data.starcloud.pcl.ac.cn. ESA Worldwide Land Cover Mapping data are from https://esa-worldcover.org/en. Global Local Climate Zone maps can be downloaded from https://www.wudapt.org/. Precipitation assessment uses ERA-5 reanalysis data product, available at https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=overview. TreeMap database is available at https://apps.fs.usda.gov/lcms-viewer/treemap.html. The mobile microclimate data are available via figshare at https://doi.org/10.6084/m9.figshare.27165168 (ref. 51). Imagery data for green space and built-up neighborhood delineation are available via figshare at https://doi.org/10.6084/m9.figshare.26533303 (ref. 52).

Code availability

The MATLAB code used to produce the figures in this paper is available via figshare at https://doi.org/10.6084/m9.figshare.27165168 (ref. 53).

References

  1. Wong, N. H., Tan, C. L., Kolokotsa, D. D. & Takebayashi, H. Greenery as a mitigation and adaptation strategy to urban heat. Nat. Rev. Earth Environ. 2, 166–181 (2021).

    Article  Google Scholar 

  2. Gómez-Navarro, C., Pataki, D. E., Pardyjak, E. R. & Bowling, D. R. Effects of vegetation on the spatial and temporal variation of microclimate in the urbanized Salt Lake Valley. Agric. For. Meteorol. 296, 108211 (2021).

    Article  Google Scholar 

  3. Mishra, V. et al. Moist heat stress extremes in India enhanced by irrigation. Nat. Geosci. 13, 722–728 (2020).

    Article  Google Scholar 

  4. Wang, Z. et al. Modelling and optimizing tree planning for urban climate in a subtropical high-density city. Urban Clim. 43, 101141 (2022).

    Article  Google Scholar 

  5. Meili, N. et al. An urban ecohydrological model to quantify the effect of vegetation on urban climate and hydrology (UT&C v1. 0). Geosci. Model Dev. 13, 335–362 (2020).

    Article  Google Scholar 

  6. Huang, X., Song, J., Wang, C., Chui, T. F. M. & Chan, P. W. The synergistic effect of urban heat and moisture islands in a compact high-rise city. Build. Environ. 205, 108274 (2021).

    Article  Google Scholar 

  7. Rahman, M. A. et al. Tree cooling effects and human thermal comfort under contrasting species and sites. Agric. For. Meteorol. 287, 107947 (2020).

    Article  Google Scholar 

  8. Wang, X. et al. The influence of vertical canopy structure on the cooling and humidifying urban microclimate during hot summer days. Landscape Urban Plann. 238, 104841 (2023).

    Article  Google Scholar 

  9. Zhang, K. et al. Increased heat risk in wet climate induced by urban humid heat. Nature 617, 38–742 (2023).

    Article  Google Scholar 

  10. Shashua-Bar, L. et al. Do urban tree hydraulics limit their transpirational cooling? A comparison between temperate and hot arid climates. Urban Clim. 49, 101554 (2023).

    Article  Google Scholar 

  11. Rahman, M. A. et al. More than a canopy cover metric: influence of canopy quality, water-use strategies and site climate on urban forest cooling potential. Landscape Urban Plann. 248, 105089 (2024).

    Article  Google Scholar 

  12. Souch, C. & Souch, C. The effect of trees on summertime below canopy urban climates: a case study Bloomington, Indiana. J. Arboric. 19, 303–312 (1993).

    Google Scholar 

  13. Cheung, P. K., Nice, K. A. & Livesley, S. J. Impacts of irrigation scheduling on urban green space cooling. Landscape Urban Plann. 248, 105103 (2024).

    Article  Google Scholar 

  14. Ibsen, P. C. et al. Greater aridity increases the magnitude of urban nighttime vegetation-derived air cooling. Environ. Res. Lett. 16, 034011 (2021).

    Article  Google Scholar 

  15. Oke, T. R. The energetic basis of the urban heat island. Q. J. R. Meteorolog. Soc. 108, 1–24 (1982).

    Google Scholar 

  16. Im, E.-S., Pal, J. S. & Eltahir, E. A. Deadly heat waves projected in the densely populated agricultural regions of South Asia. Sci. Adv. 3, e1603322 (2017).

    Article  Google Scholar 

  17. Krakauer, N. Y., Cook, B. I. & Puma, M. J. Effect of irrigation on humid heat extremes. Environ. Res. Lett. 15, 094010 (2020).

    Article  Google Scholar 

  18. Katz, R. W. & Brown, B. G. Extreme events in a changing climate: variability is more important than averages. Climatic Change 21, 289–302 (1992).

    Article  Google Scholar 

  19. Miralles, D. G., Gentine, P., Seneviratne, S. I. & Teuling, A. J. Land–atmospheric feedbacks during droughts and heatwaves: state of the science and current challenges. Ann. N.Y. Acad. Sci. 1436, 19–35 (2019).

    Article  Google Scholar 

  20. Wang, P., Li, D., Liao, W., Rigden, A. & Wang, W. Contrasting evaporative responses of ecosystems to heatwaves traced to the opposing roles of vapor pressure deficit and surface resistance. Water Resour. Res. 55, 4550–4563 (2019).

    Article  Google Scholar 

  21. Bowler, D. E., Buyung-Ali, L., Knight, T. M. & Pullin, A. S. Urban greening to cool towns and cities: a systematic review of the empirical evidence. Landscape Urban Plann. 97, 147–155 (2010).

    Article  Google Scholar 

  22. Cohen, P., Potchter, O. & Matzarakis, A. Daily and seasonal climatic conditions of green urban open spaces in the Mediterranean climate and their impact on human comfort. Build. Environ. 51, 285–295 (2012).

    Article  Google Scholar 

  23. Fung, C. K. & Jim, C. Y. Microclimatic resilience of subtropical woodlands and urban-forest benefits. Urban For. Urban Greening 42, 100–112 (2019).

    Article  Google Scholar 

  24. Jansson, C., Jansson, P.-E. & Gustafsson, D. Near surface climate in an urban vegetated park and its surroundings. Theor. Appl. Climatol. 89, 185–193 (2007).

    Article  Google Scholar 

  25. Erell, E., Leal, V. & Maldonado, E. Measurement of air temperature in the presence of a large radiant flux: an assessment of passively ventilated thermometer screens. Boundary Layer Meteorol. 114, 205–231 (2005).

    Article  Google Scholar 

  26. Gill G. C. Comparison Testing of Selected Naturally Ventilated Solar Radiation Shields. Technical Report (Univ. of Michigan, 1983).

  27. Huwald H. et al. Albedo effect on radiative errors in air temperature measurements. Water Resour. Res. 45, W08431 (2009).

  28. Nakamura, R. & Mahrt, L. Air temperature measurement errors in naturally ventilated radiation shields. J. Atmos. Oceanic Technol. 22, 1046–1058 (2005).

    Article  Google Scholar 

  29. Richardson, S. J., Brock, F. V., Semmer, S. R. & Jirak, C. Minimizing errors associated with multiplate radiation shields. J. Atmos. Oceanic Technol. 16, 1862–1872 (1999).

    Article  Google Scholar 

  30. Holden, Z. A., Klene, A. E., Keefe, R. F. & Moisen, G. G. Design and evaluation of an inexpensive radiation shield for monitoring surface air temperatures. Agric. For. Meteorol. 180, 281–286 (2013).

    Article  Google Scholar 

  31. Potchter, O., Cohen, P. & Bitan, A. Climatic behavior of various urban parks during hot and humid summer in the Mediterranean city of Tel Aviv, Israel. Int. J. Climatol. 26, 1695–1711 (2006).

    Article  Google Scholar 

  32. Amani-Beni, M., Zhang, B. & Xu, J. Impact of urban park’s tree, grass and waterbody on microclimate in hot summer days: a case study of Olympic Park in Beijing, China. Urban For. Urban Greening 32, 1–6 (2018).

    Article  Google Scholar 

  33. Nichol, J. E. High-resolution surface temperature patterns related to urban morphology in a tropical city: a satellite-based study. J. Appl. Meteorol. Climatol. 35, 135–146 (1996).

    Article  Google Scholar 

  34. Chakraborty, T., Venter, Z., Qian, Y. & Lee, X. Lower urban humidity moderates outdoor heat stress. AGU Adv. 3, e2022AV000729 (2022).

    Article  Google Scholar 

  35. Raymond, C., Matthews, T. & Horton, R. M. The emergence of heat and humidity too severe for human tolerance. Sci. Adv. 6, eaaw1838 (2020).

    Article  Google Scholar 

  36. Wouters, H. et al. Soil drought can mitigate deadly heat stress thanks to a reduction of air humidity. Sci. Adv. 8, eabe6653 (2022).

    Article  Google Scholar 

  37. Zhao, L. et al. Global multi-model projections of local urban climates. Nat. Clim. Change 11, 152–157 (2021).

    Article  Google Scholar 

  38. Jendritzky, G., de Dear, R. & Havenith, G. UTCI—why another thermal index? Int. J. Biometeorol. 56, 421–428 (2012).

    Article  Google Scholar 

  39. Höppe, P. The physiological equivalent temperature – a universal index for the biometeorological assessment of the thermal environment. Int. J. Biometeorol. 43, 71–75 (1999).

    Article  Google Scholar 

  40. Cao, C. et al. Performance evaluation of a smart mobile air temperature and humidity sensor for characterizing intracity thermal environment. J. Atmos. Oceanic Technol. 37, 1891–1905 (2020).

    Article  Google Scholar 

  41. Yu, L. et al. FROM-GC: 30 m global cropland extent derived through multisource data integration. Int. J. Digital Earth 6, 521–533 (2013).

    Article  Google Scholar 

  42. Richards, D. R., Fung, T. K., Belcher, R. & Edwards, P. J. Differential air temperature cooling performance of urban vegetation types in the tropics. Urban For. Urban Greening 50, 126651 (2020).

    Article  Google Scholar 

  43. Stewart, I. D. & Oke, T. R. Local climate zones for urban temperature studies. Bull. Am. Meteorol. Soc. 93, 1879–1900 (2012).

    Article  Google Scholar 

  44. Oliveira, S., Andrade, H. & Vaz, T. The cooling effect of green spaces as a contribution to the mitigation of urban heat: a case study in Lisbon. Build. Environ. 46, 2186–2194 (2011).

    Article  Google Scholar 

  45. Spronken-Smith, R. & Oke, T. The thermal regime of urban parks in two cities with different summer climates. Int. J. Remote Sens. 19, 2085–2104 (1998).

    Article  Google Scholar 

  46. Georgi, N. J. & Zafiriadis, K. The impact of park trees on microclimate in urban areas. Urban Ecosyst. 9, 195–209 (2006).

    Article  Google Scholar 

  47. Gillner, S., Vogt, J., Tharang, A., Dettmann, S. & Roloff, A. Role of street trees in mitigating effects of heat and drought at highly sealed urban sites. Landscape Urban Plann. 143, 33–42 (2015).

    Article  Google Scholar 

  48. Helletsgruber, C. et al. Identifying tree traits for cooling urban heat islands—a cross-city empirical analysis. Forests 11, 1064 (2020).

    Article  Google Scholar 

  49. Konarska, J. et al. Transpiration of urban trees and its cooling effect in a high latitude city. Int. J. Biometeorol. 60, 159–172 (2016).

    Article  Google Scholar 

  50. Riley, K. L., Grenfell, I. C., Finney, M. A. & Shaw, J. D. TreeMap 2016: a tree-level model of the forests of the conterminous United States circa 2016. Fort Collins, CO: Forest Service Research Data Archive https://doi.org/10.2737/RDS-2021-0074 (2021).

  51. Yang, Y. et al. Code and data for publication ‘Regulation of humid heat by urban greenspace across a climate wetness gradient’. figshare https://doi.org/10.6084/m9.figshare.27165168 (2024).

  52. Yang, Y. et al. Greenspace delineation. figshare https://doi.org/10.6084/m9.figshare.26533303 (2024).

  53. Yang, Y. et al. Data and code for regulation of humid heat by urban greenspace across a climate wetness gradient. figshare https://doi.org/10.6084/m9.figshare.27165168 (2024).

Download references

Acknowledgements

C.C. acknowledges support by the National Natural Science Foundation of China (grant 42005143), X.L. by Robert Wood Johnson Foundation (grant 77476) and a Leitner Award for Uncommon Environmental Collaborations, and Y.Y. and K.Z. by a Yale Graduate Fellowship. We thank the following individuals for their effort in testing the mobile measurement system: M. Bradford, S. Smiley Smith, A. Adams, P. Aldinger, I. Boneh, Z. Chen, D. Chenoweth, J. Chia, H. Darrin, S. Donovan, E. Fine, B. Gilmore, M. Grenon, R. Harlig, A. Hofmann, J. Hofmann, C. Humphrey, D. Kane, Z. Li, C. Sanchez de Lozada, J. Lu, J. Macrone, C. Murphy-Dunning, A. Orloff, K. Pofahl, A. Raffeld, Z. Ratner, M. Reback, P. Rink, K. Shennum, V. Sorab, E. Stagg, U. Talaty, S. Verma, J. Walczak, A. Warner, E. Witts, N. Yeoh, M. Zhong and K. Zimmerman.

Author information

Authors and Affiliations

Authors

Contributions

X.L. designed the research. Y.Y. performed data analysis. C.C. assessed the quality of instruments. Y.Y., C.C., I.B., C.D., G.D., J.H., L.H., X.H., N.K., J.L., H.L., K.T., C.Y. and K.Z. contributed to data collection. X.L. and Y.Y. drafted the paper.

Corresponding author

Correspondence to Xuhui Lee.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Cities thanks Ioannis Kousis, Kerry Nice and Mohammad Rahman for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–4, Figs. 1–11 and References.

Reporting Summary

Source data

Source Data Fig. 1

Source data for Fig. 1.

Source Data Fig. 2

Source data for Fig. 2.

Source Data Fig. 3

Source data for Fig. 3.

Source Data Fig. 4

Source data for Fig. 4.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Cao, C., Bogoev, I. et al. Regulation of humid heat by urban green space across a climate wetness gradient. Nat Cities 1, 871–879 (2024). https://doi.org/10.1038/s44284-024-00157-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44284-024-00157-y

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene