Table 4 List of hyperparameter values for passenger flow prediction networks
| Â | Parameters | Module name | Value |
|---|---|---|---|
GEME-Net (Teacher model) | \({C}_{in}\) | Re-parameterized convolutional embedding layer | 18 |
\({C}_{out}\) | Re-parameterized convolutional embedding layer | 12 | |
\({C}_{p}\) | Encoder module | 32 | |
\({k}_{m}\) | Re-parameterized convolutional embedding layer | 3 | |
\({k}_{rc}\) | Re-parameterized convolutional embedding layer | 5 | |
\({M}_{e}\) | Event-driven frequency-enhanced module | 5 | |
Head number of event-driven frequency-enhanced attention | Event-driven frequency-enhanced module | 4 | |
\({k}_{msr}\) | Multi-scale retention rate attention | 32 | |
\({H}_{MSR}\) | Multi-scale retention rate attention | 6 | |
l | Spatial-temporal adaptive multi-graph convolutional network | 3 | |
\({H}_{e}\) | Sparse attention mechanism | 4 | |
H | Multi-head self-attention | 4 | |
GEME-Net (Student model) | \({d}_{h}\) | - | 128 |
\({r}_{h1}\) | - | 16 | |
\({r}_{h2}\) | - | 8 | |
Dropout ratio | - | 0.1 | |
\({\alpha }_{d}\) | - | 0.5 |