Abstract
Global mapping of lunar surface chemistry is crucial for revealing the geological characteristics and evolutionary history of the Moon. However, existing estimates of elemental abundances rely primarily on remote sensing data calibrated with sample-based ground truth information from the lunar nearside, leaving the farside largely unconstrained and limiting the accuracy of global chemical models. Here we integrate farside ground truth data from the Chang’e-6 sampling site, together with pre-existing nearside sample data and orbital spectral datasets from the Kaguya multiband imager, to refine global chemical maps. We apply a residual convolutional neural network with a fine-tuning strategy to optimally calibrate elemental abundances across the surface. The resulting global maps constrain the extent and composition of farside terranes and reveal deep-seated materials exposed in the South Pole–Aitken basin and highlands. These refined maps offer quantitative guidance for landing site selection and future lunar exploration missions.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
Data availability
The maps generated in this study and the LROC WAC global 100 m mosaic are available from Figshare50. The SELENE (Kaguya) multiband imager data with a resolution of ~59 m px−1 after topography shadow correction used in this study are available at https://astrogology.usgs.gov/search/map/lunar-kaguya-multiband-imager-mosaics. The previous multiband imager chemistry maps are available from https://doi.org/10.1038/s41467-023-43358-0 (ref. 14), https://doi.org/10.1016/j.icarus.2023.115505 (ref. 8) and https://doi.org/10.1016/j.pss.2021.105360 (ref. 7). The LRO Diviner chemistry maps are available from the Harvard Dataverse at https://doi.org/10.7910/DVN/ADSUJD; the M3–GRS map is available from https://doi.org/10.1051/0004-6361/201935773 (ref. 12); the LPGRS elemental maps are accessible from https://pds-geosciences.wustl.edu/lunar/lp-l-grs-5-elem-abundance-v1/; and the LRO LOLA global shaded relief map is available at https://doi.org/10.6084/m9.figshare.31044286.
Code availability
Python implementation of the methodology developed and used in the present study is available at https://github.com/zyyan-cc/RLCM-DL.
References
He, H. et al. Water abundance in the lunar farside mantle. Nature 643, 366–370 (2025).
Lu, X. et al. Mature lunar soils from Fe-rich and young mare basalts in the Chang’e-5 regolith samples. Nat. Astron. 7, 142–151 (2023).
Lucey, P. G., Blewett, D. T. & Hawke, B. R. Mapping the FeO and TiO2 content of the lunar surface with multispectral imagery. J. Geophys. Res. Planets 103, 3679–3699 (1998).
Liu, S. et al. In-situ mapping of iron and titanium with the visible and near-infrared image spectrometer (VNIS) along the Yutu-2 rover traverse on the farside of the moon. Icarus 412, 116003 (2024).
Korotev, R. L., Jolliff, B. L., Zeigler, R. A., Gillis, J. J. & Haskin, L. A. Feldspathic lunar meteorites and their implications for compositional remote sensing of the lunar surface and the composition of the lunar crust. Geochim. Cosmochim. Acta 67, 4895–4923 (2003).
Ma, M. et al. Global estimates of lunar surface chemistry derived from LRO Diviner data. Icarus 371, 114697 (2022).
Wang, X., Zhang, J. & Ren, H. Lunar surface chemistry observed by the KAGUYA multiband imager. Planet. Space Sci. 209, 105360 (2021).
Zhang, L. et al. New maps of major oxides and Mg # of the lunar surface from additional geochemical data of Chang’e-5 samples and KAGUYA multiband imager data. Icarus 397, 115505 (2023).
Ohtake, M. et al. Asymmetric crustal growth on the Moon indicated by primitive farside highland materials. Nat. Geosci. 5, 384–388 (2012).
Crites, S. T. & Lucey, P. G. Revised mineral and Mg# maps of the Moon from integrating results from the Lunar Prospector neutron and gamma-ray spectrometers with Clementine spectroscopy. Am. Mineral. 100, 973–982 (2015).
Lucey, P. G., Blewett, D. T. & Jolliff, B. L. Lunar iron and titanium abundance algorithms based on final processing of Clementine ultraviolet-visible images. J. Geophys. Res. Planets 105, 20297–20305 (2000).
Bhatt, M., Wöhler, C., Grumpe, A., Hasebe, N. & Naito, M. Global mapping of lunar refractory elements: multivariate regression vs. machine learning. Astron. Astrophys. 627, A155 (2019).
Fu, X.-H. et al. Data processing for the Active Particle-induced X-ray Spectrometer and initial scientific results from Chang'e-3 mission. Res. Astron. Astrophys. 14, 1595 (2014).
Yang, C. et al. Comprehensive mapping of lunar surface chemistry by adding Chang’e-5 samples with deep learning. Nat. Commun. 14, 7554 (2023).
Li, C. et al. Nature of the lunar far-side samples returned by the Chang’e-6 mission. Natl Sci. Rev. 11, nwae328 (2024).
Yue, Z. et al. Geological context of the Chang’e-6 landing area and implications for sample analysis. Innovation 5, 100663 (2024).
Zeng, X. et al. Landing site of the Chang’e-6 lunar farside sample return mission from the Apollo basin. Nat. Astron. 7, 1188–1197 (2023).
Melosh, H. J. et al. South Pole–Aitken basin ejecta reveal the Moon’s upper mantle. Geology 45, 1063–1066 (2017).
Moriarty, D. P., Dygert, N., Valencia, S. N., Watkins, R. N. & Petro, N. E. The search for lunar mantle rocks exposed on the surface of the Moon. Nat. Commun. 12, 4659 (2021).
Jolliff, B. L., Gillis, J. J., Haskin, L. A., Korotev, R. L. & Wieczorek, M. A. Major lunar crustal terranes: surface expressions and crust-mantle origins. J. Geophys. Res. Planets 105, 4197–4216 (2000).
Wieczorek, M. A. & Zuber, M. T. The composition and origin of the lunar crust: constraints from central peaks and crustal thickness modeling. Geophys. Res. Lett. 28, 4023–4026 (2001).
Wieczorek, M. A. & Phillips, R. J. Potential anomalies on a sphere: applications to the thickness of the lunar crust. J. Geophys. Res. Planets 103, 1715–1724 (1998).
Yingst, R. A. & Head, J. W. Volumes of lunar lava ponds in South Pole-Aitken and Orientale Basins: implications for eruption conditions, transport mechanisms, and magma source regions. J. Geophys. Res. Planets 102, 10909–10931 (1997).
Sun, L. & Lucey, P. G. Lunar mantle composition and timing of overturn indicated by Mg# and mineralogy distributions across the South Pole-Aitken basin. Earth Planet. Sci. Lett. 643, 118931 (2024).
Hapke, B. Theory of Reflectance and Emittance Spectroscopy (Cambridge Univ. Press, 1993).
Pieters, C. Statistical analysis of the links among lunar mare soil mineralogy, chemistry, and reflectance spectra. Icarus 155, 285–298 (2002).
Kodikara, G. R. L. & McHenry, L. J. Machine learning approaches for classifying lunar soils. Icarus 345, 113719 (2020).
Li, S., Li, L., Milliken, R. & Song, K. Hybridization of partial least squares and neural network models for quantifying lunar surface minerals. Icarus 221, 208–225 (2012).
Ohtake, M. et al. One moon, many measurements 3: spectral reflectance. Icarus 226, 364–374 (2013).
Takeda, H. et al. Magnesian anorthosites and a deep crustal rock from the farside crust of the moon. Earth Planet. Sci. Lett. 247, 171–184 (2006).
Arai, T., Takeda, H., Yamaguchi, A. & Ohtake, M. A new model of lunar crust: asymmetry in crustal composition and evolution. Earth Planets Space 60, 433–444 (2008).
Charlier, B., Grove, T. L., Namur, O. & Holtz, F. Crystallization of the lunar magma ocean and the primordial mantle-crust differentiation of the Moon. Geochim. Cosmochim. Acta 234, 50–69 (2018).
Prettyman, T. H. et al. Elemental composition of the lunar surface: analysis of gamma ray spectroscopy data from Lunar Prospector. J. Geophys. Res. Planets 111, E12007 (2006).
Chen, S. et al. Analysis of a large buried impact crater and vertical mineral composition at the Chang’e-4 landing site by multi-source remote sensing data. Icarus 422, 116256 (2024).
Pieters, C. M., Head, J. W., Gaddis, L., Jolliff, B. & Duke, M. Rock types of South Pole-Aitken basin and extent of basaltic volcanism. J. Geophys. Res. Planets 106, 28001–28022 (2001).
Joy, K. H. et al. Evidence of a 4.33 billion year age for the Moon’s South Pole–Aitken basin. Nat. Astron. 9, 55–65 (2024).
Dowty, E., Prinz, M. & Keil, K. Ferroan anorthosite: a widespread and distinctive lunar rock type. Earth Planet. Sci. Lett. 24, 15–25 (1974).
Elardo, S. M. et al. The evolution of the lunar crust. Rev. Mineral. Geochem. 89, 293–338 (2023).
Xu, X. et al. Formation of lunar highlands anorthosites. Earth Planet. Sci. Lett. 536, 116138 (2020).
Shearer, C. K., Elardo, S. M., Petro, N. E., Borg, L. E. & McCubbin, F. M. Origin of the lunar highlands Mg-suite: an integrated petrology, geochemistry, chronology, and remote sensing perspective. Am. Mineral. 100, 294–325 (2015).
Sheng, S.-Z. et al. Lunar primitive mantle olivine returned by Chang’e-6. Nat. Commun. 16, 3759 (2025).
Zhang, Q. W. L. et al. Lunar farside volcanism 2.8 billion years ago from Chang’e-6 basalts. Nature 643, 356–360 (2025).
Uemoto, K. et al. Evidence of impact melt sheet differentiation of the lunar South Pole-Aitken basin. J. Geophys. Res. Planets 122, 1672–1686 (2017).
Blewett, D. T., Lucey, P. G., Hawke, B. R. & Jolliff, B. L. Clementine images of the lunar sample-return stations: refinement of FeO and TiO2 mapping techniques. J. Geophys. Res. Planets 102, 16319–16325 (1997).
Lucey, P. G., Taylor, G. J. & Malaret, E. Abundance and distribution of iron on the moon. Science 268, 1150–1153 (1995).
Lucey, P. G., Blewett, D. T., Taylor, G. J. & Hawke, B. R. Imaging of lunar surface maturity. J. Geophys. Res. Planets 105, 20377–20386 (2000).
He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In Proc. 2016 IEEE Conference on Computer Vision and Pattern Recognition 770–778 (IEEE, 2016).
Wortsman, M., et al. Model soups: averaging weights of multiple fine-tuned models improves accuracy without increasing inference time. In Proc. 39th International Conference on Machine Learning (eds Chaudhuri, K. et al.) 23965–23998 (2022).
Hu, J., Shen, L. & Sun, G. Squeeze-and-excitation networks. In Proc. IEEE Conference on Computer Vision and Pattern Recognition 7132–7141 (IEEE, 2018).
Shi, X. et al. Dataset title. Figshare https://doi.org/10.6084/m9.figshare.30022171 (2025).
Moriarty, D. P. & Pieters, C. M. The character of South Pole-Aitken basin: patterns of surface and subsurface composition. J. Geophys. Res. Planets 123, 729–747 (2018).
Acknowledgements
We thank all of the staff of China’s Chang’e-6 lunar exploration project for providing precious sample truth. This work was supported by the National Natural Science Foundation of China (grants 42221002 (X.T.), T2521003 (W.H.), 42171432 (S.L.), W2511065 (F.W.), 62422410 (F.W.) and 62327812 (W.H.)); Strategic Priority Research Program of the Chinese Academy of Sciences (grant XDB0580000 (W.H.)); Shanghai Rising-Star Program (grant 24QA2711000 (F.W.)); CAS Pioneer Hundred Talents Program (F.W.) and Fundamental Research Funds for the Central Universities.
Author information
Authors and Affiliations
Contributions
F.W., W.H., Z.H., X.T. and S.L. conceived of and supervised the project, proposed the idea and designed the experiments. J. Chu provided project planning and scientific background. X.S., J. Chen and J.W. contributed equally to the data analyses and geological interpretation and wrote the manuscript. J.L. helped with the global chemistry mapping. H.X. contributed to the reduction of remote sensing datasets. Z.Y. and S.W. contributed to data pre-processing and the inversion algorithm.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Sensors thanks Gayantha Kodikara and the other, anonymous, reviewers for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary text, Tables 1–6 and Figs. 1–5.
Supplementary Data 1
Source Data for Supplementary Figs. 1–3.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Shi, X., Chen, J., Wang, J. et al. Refined lunar global chemistry mapping using farside ground truth information gathered by Chang’e-6. Nat. Sens. (2026). https://doi.org/10.1038/s44460-025-00021-z
Received:
Accepted:
Published:
Version of record:
DOI: https://doi.org/10.1038/s44460-025-00021-z


