Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
and JavaScript.
Murphy et al. reveal a unifying pathogenetic mechanism according to which diverse mutations in the muscle-specific ribosomal protein RPL3L cause severe neonatal dilated cardiomyopathy, establishing a framework for interpreting the growing spectrum of RPL3L variants.
Saito et al. identify sphingosine kinase 1 as a critical regulator of physiological ductus arteriosus closure and pathological supravalvular aortic stenosis through its role in smooth muscle cell proliferation and propose potential therapeutics.