Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 313 results
Advanced filters: Author: Andy Thomas Clear advanced filters
  • Understanding collective behaviour is an important aspect of managing the pandemic response. Here the authors show in a large global study that participants that reported identifying more strongly with their nation reported greater engagement in public health behaviours and support for public health policies in the context of the pandemic.

    • Jay J. Van Bavel
    • Aleksandra Cichocka
    • Paulo S. Boggio
    ResearchOpen Access
    Nature Communications
    Volume: 13, P: 1-14
  • An analysis of 24,202 critical cases of COVID-19 identifies potentially druggable targets in inflammatory signalling (JAK1), monocyte–macrophage activation and endothelial permeability (PDE4A), immunometabolism (SLC2A5 and AK5), and host factors required for viral entry and replication (TMPRSS2 and RAB2A).

    • Erola Pairo-Castineira
    • Konrad Rawlik
    • J. Kenneth Baillie
    ResearchOpen Access
    Nature
    Volume: 617, P: 764-768
  • Analysis of a placebo-controlled trial of a BCMA-targeting CAR-T cell therapy in patients with myasthenia gravis shows that CAR-T cell infusion selectively remodels the systemic immune environment, with elimination of BCMA-high plasma cells and activated plasmacytoid dendritic cells and changes in the autoreactive B cell repertoire.

    • Renee R. Fedak
    • Rachel N. Ruggerie
    • Kelly Gwathmey
    ResearchOpen Access
    Nature Medicine
    P: 1-13
  • Whole-genome sequencing, transcriptome-wide association and fine-mapping analyses in over 7,000 individuals with critical COVID-19 are used to identify 16 independent variants that are associated with severe illness in COVID-19.

    • Athanasios Kousathanas
    • Erola Pairo-Castineira
    • J. Kenneth Baillie
    ResearchOpen Access
    Nature
    Volume: 607, P: 97-103
  • Trends in global H2 sources and sinks are analysed from 1990 to 2020, and a comprehensive budget for the decade 2010–2020 is presented.

    • Zutao Ouyang
    • Robert B. Jackson
    • Andy Wiltshire
    ResearchOpen Access
    Nature
    Volume: 648, P: 616-624
  • Single-layer graphene, owing to its impermeability, is a promising candidate to prevent transmembrane ion transport. Here, the authors report a covalent functionalization method that enables centimeter-sized graphene to function as a proton exchange membrane in a direct methanol fuel cell.

    • Weizhe Zhang
    • Max Makurat
    • Grégory F. Schneider
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-10
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • Treading familiar ground.

    • Andy W. Taylor
    Comments & Opinion
    Nature
  • NMR spectroscopy is a powerful tool for studying chemical reactions, but short-lived intermediates are hard to capture. The authors present a system combining LED and rapid-injection NMR for in situ monitoring of photochemical processes, advancing the study of reactive species and kinetics.

    • Danniel K. Arriaga
    • Ravinder Kaur
    • Andy A. Thomas
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-8
  • A global network of researchers was formed to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity; this paper reports 13 genome-wide significant loci and potentially actionable mechanisms in response to infection.

    • Mari E. K. Niemi
    • Juha Karjalainen
    • Chloe Donohue
    ResearchOpen Access
    Nature
    Volume: 600, P: 472-477
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • In this study the authors consider the structural variants (SVs) present within cancer cases of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. They report hundreds of genes, including known cancer-associated genes for which the nearby presence of a SV breakpoint is associated with altered expression.

    • Yiqun Zhang
    • Fengju Chen
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14
  • Chan et al. generate a high-resolution spatiotemporal atlas of healing hearts and reveal cellular networks of lesion repair, including macrophage–fibroblast interactions that control late-stage fibrosis and immune niches that induce cardiomyocyte de-differentiation.

    • Andy Shing-Fung Chan
    • Joachim Greiner
    • Dominic Grün
    ResearchOpen Access
    Nature Cardiovascular Research
    Volume: 4, P: 1550-1572
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • Traditionally, ozone has been primarily used to oxidatively deconstruct carbon–carbon bonds. Now, it has been shown that ozone can be used for the construction of carbon–oxygen bonds without oxidative cleavage of the olefin substrate through capturing primary ozonides. Furthermore, intercepting primary ozonides with nucleophiles in continuous flow enabled the green, syn-dihydroxylation of olefins to be realized.

    • Danniel K. Arriaga
    • Andy A. Thomas
    Research
    Nature Chemistry
    Volume: 15, P: 1262-1266
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Some cancer patients first present with metastases where the location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

    • Wei Jiao
    • Gurnit Atwal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Citizen science taps the efforts of non-experts. Here, authors describe Drugit, an extension of the crowdsourcing game Foldit, and its use in designing a non-peptide binder of Von Hippel Lindau E3 ligase for use with proteolysis targeting chimeras.

    • Thomas Scott
    • Christian Alan Paul Smethurst
    • Rocco Moretti
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-11
  • Terahertz radiation is used to directly probe magnetotransport in metallic multilayers on the timescale of electron momentum scattering—the fundamental conditions of Nevill Mott’s model of spin-dependent conduction in metals.

    • Zuanming Jin
    • Alexander Tkach
    • Dmitry Turchinovich
    Research
    Nature Physics
    Volume: 11, P: 761-766
  • Head and neck squamous cell carcinoma (HNSCC) frequency and risk factors vary considerably across regions and ancestries. Here, the authors conduct a multi-ancestry genome-wide association study and fine mapping study of HNSCC subsites in cohorts from multiple continents, finding susceptibility and protective loci, gene-environment interactions, and gene variants related to immune response.

    • Elmira Ebrahimi
    • Apiwat Sangphukieo
    • Tom Dudding
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-18
  • Natural products have historically made a major contribution to pharmacotherapy, but also present challenges for drug discovery, such as technical barriers to screening, isolation, characterization and optimization. This Review discusses recent technological developments — including improved analytical tools, genome mining and engineering strategies, and microbial culturing advances — that are enabling a revitalization of natural product-based drug discovery.

    • Atanas G. Atanasov
    • Sergey B. Zotchev
    • Claudiu T. Supuran
    Reviews
    Nature Reviews Drug Discovery
    Volume: 20, P: 200-216
  • Genome-wide ancient DNA data from individuals from the Middle Bronze Age to Iron Age documents large-scale movement of people from the European continent between 1300 and 800 bc that was probably responsible for spreading early Celtic languages to Britain.

    • Nick Patterson
    • Michael Isakov
    • David Reich
    Research
    Nature
    Volume: 601, P: 588-594
  • Strong lasing effects similar to those in the optical regime can occur at 1.5–2.1 Å wavelengths during high-intensity XFEL-driven Kα1 lasing of copper and manganese.

    • Thomas M. Linker
    • Aliaksei Halavanau
    • Uwe Bergmann
    Research
    Nature
    Volume: 642, P: 934-940
  • Expanding the scope of materials for spin caloritronics enhances the opportunity to achieve more energy efficient memory and sensor devices. Here the authors report the tunnel magneto-Seebeck effects in magnetic tunnel junctions with Co2FeAl and Co2FeSi Heusler compounds.

    • Alexander Boehnke
    • Ulrike Martens
    • Günter Reiss
    ResearchOpen Access
    Nature Communications
    Volume: 8, P: 1-7
  • It is now shown that femtosecond optical excitation can be used as a tool to investigate the spin-polarization properties of half-metals, and provide a clear distinction between those and metals. Such knowledge is of fundamental importance for the use of these materials in spintronics applications.

    • Georg M. Müller
    • Jakob Walowski
    • Markus Münzenberg
    Research
    Nature Materials
    Volume: 8, P: 56-61
  • Whole-genome sequencing analysis of individuals with primary immunodeficiency identifies new candidate disease-associated genes and shows how the interplay between genetic variants can explain the variable penetrance and complexity of the disease.

    • James E. D. Thaventhiran
    • Hana Lango Allen
    • Kenneth G. C. Smith
    Research
    Nature
    Volume: 583, P: 90-95