Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 800 results
Advanced filters: Author: B. Navarro Clear advanced filters
  • Identifying jets originating from heavy quarks plays a fundamental role in hadronic collider experiments. In this work, the ATLAS Collaboration describes and tests a transformer-based neural network architecture for jet flavour tagging based on low-level input and physics-inspired constraints.

    • G. Aad
    • E. Aakvaag
    • L. Zwalinski
    ResearchOpen Access
    Nature Communications
    Volume: 17, P: 1-22
  • Understanding collective behaviour is an important aspect of managing the pandemic response. Here the authors show in a large global study that participants that reported identifying more strongly with their nation reported greater engagement in public health behaviours and support for public health policies in the context of the pandemic.

    • Jay J. Van Bavel
    • Aleksandra Cichocka
    • Paulo S. Boggio
    ResearchOpen Access
    Nature Communications
    Volume: 13, P: 1-14
  • The CMS Collaboration reports the measurement of the spin, parity, and charge conjugation properties of all-charm tetraquarks, exotic fleeting particles formed in proton–proton collisions at the Large Hadron Collider.

    • A. Hayrapetyan
    • V. Makarenko
    • A. Snigirev
    ResearchOpen Access
    Nature
    Volume: 648, P: 58-63
  • Understanding kinase action requires precise quantitative and spatial measurements of their activity in vivo. Here the authors develop a proteomic kinase activity sensor technique (ProKAS) enabling multiplexed spatial, kinetic, and screening analyses of kinase activities via mass spectrometry.

    • William J. Comstock
    • Marcos V. A. S. Navarro
    • Marcus B. Smolka
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-17
  • Loss of vegetation carbon from biodiversity loss could rival emissions from other sources such as land-use change. This creates a feedback where climate change increases biodiversity loss, leading to greater emissions and more climate change.

    • Sarah R. Weiskopf
    • Forest Isbell
    • Simon Ferrier
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-12
  • Antimicrobial resistance genes that have been mobilized between bacterial species represent a subset of the naturally occurring resistome. Here, the authors compare the abundance, diversity and geographical patterns of acquired resistance genes with latent resistance genes in global sewage metagenomes.

    • Hannah-Marie Martiny
    • Patrick Munk
    • Frank M. Aarestrup
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-12
  • The quark structure of the f0(980) hadron is still unknown after 50 years of its discovery. Here, the CMS Collaboration reports a measurement of the elliptic flow of the f0(980) state in proton-lead collisions at a nucleon-nucleon centre-of-mass energy of 8.16 TeV, providing strong evidence that the state is an ordinary meson.

    • A. Hayrapetyan
    • A. Tumasyan
    • A. Zhokin
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-19
  • An extreme Einstein ring ~10,000 times as bright as the Milky Way in the infrared is studied with VLT/ERIS and ALMA, and the authors find that the lensed galaxy is a starburst with a fast-rotating disk, rather than being driven by a major merger.

    • Daizhong Liu
    • Natascha M. Förster Schreiber
    • Min S. Yun
    ResearchOpen Access
    Nature Astronomy
    Volume: 8, P: 1181-1194
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • Genomic studies of attention-deficit/hyperactivity disorder (ADHD) have advanced the understanding of its neurobiology but are still constrained by one of the most pronounced Eurocentric biases in psychiatric genetics. Expanding ADHD genomics to under-represented populations, particularly in Latin America, offers a unique opportunity to yield transformative discoveries by capturing the genetic diversity of admixed individuals. We call for a global, coordinated effort to prioritize diversity in ADHD research, not only to foster innovation in precision psychiatry but also to ensure that these advancements benefit all populations equitably.

    • Bruna Santos da Silva
    • Claiton Henrique Dotto Bau
    • Nicolás Garzón Rodríguez
    Comments & Opinion
    Nature Mental Health
    P: 1-4
  • Cavity optomechanics connects light to the mechanical degrees of freedom of a resonator and has great potential for sensing applications. Here, the authors realize a one-dimensional optomechanical crystal with a complete phononic bandgap containing high Q-factor modes and limited clamping losses.

    • J. Gomis-Bresco
    • D. Navarro-Urrios
    • C.M. Sotomayor Torres
    Research
    Nature Communications
    Volume: 5, P: 1-6
  • Analysis of soundscape data from 139 globally distributed sites reveals that sounds of biological origin exhibit predictable rhythms depending on location and season, whereas sounds of anthropogenic origin are less predictable. Comparisons between paired urban–rural sites show that urban green spaces are noisier and dominated by sounds of technological origin.

    • Panu Somervuo
    • Tomas Roslin
    • Otso Ovaskainen
    ResearchOpen Access
    Nature Ecology & Evolution
    Volume: 9, P: 1585-1598
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • In this study the authors consider the structural variants (SVs) present within cancer cases of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. They report hundreds of genes, including known cancer-associated genes for which the nearby presence of a SV breakpoint is associated with altered expression.

    • Yiqun Zhang
    • Fengju Chen
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14
  • CrI3 is a popular van der Waals magnet that exhibits anomalous magnetic properties between bulk and thin layers due to different crystal symmetry. Here, the authors report the coexistence of different magnetostructural phases over the entire range of temperatures, solving a long-standing puzzle.

    • Jaume Meseguer-Sánchez
    • Catalin Popescu
    • Elton J. G. Santos
    ResearchOpen Access
    Nature Communications
    Volume: 12, P: 1-7
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • The control of translation during mitosis has an important role in cancer cell biology. Here the authors report that in mitotically arrested cancer cells, redistribution of ribosomes towards upstream open reading frames results in enhanced presentation of immunogenic peptides on cancer cell surface.

    • Alexander Kowar
    • Jonas P. Becker
    • Fabricio Loayza-Puch
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-15
  • In optomechanics, optical nonlinearities are usually regarded as detrimental and efforts are made to minimize their effects. Here, the authors study the complex dynamics, including chaos, arising from the coupling of such optical nonlinearities with the mechanical modes of a silicon nanobeam cavity.

    • Daniel Navarro-Urrios
    • Néstor E. Capuj
    • Clivia M. Sotomayor-Torres
    ResearchOpen Access
    Nature Communications
    Volume: 8, P: 1-10
  • A cosmological model treating dark matter as a coherent quantum wave agrees well with conventional dark-matter theory on an astronomical scale. But on smaller scales, the quantum nature of wave-like dark matter can explain dark-matter cores that are observed in dwarf galaxies, which standard theory cannot.

    • Hsi-Yu Schive
    • Tzihong Chiueh
    • Tom Broadhurst
    Research
    Nature Physics
    Volume: 10, P: 496-499
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • Entanglement was observed in top–antitop quark events by the ATLAS experiment produced at the Large Hadron Collider at CERN using a proton–proton collision dataset with a centre-of-mass energy of √s  = 13 TeV and an integrated luminosity of 140 fb−1.

    • G. Aad
    • B. Abbott
    • L. Zwalinski
    ResearchOpen Access
    Nature
    Volume: 633, P: 542-547
  • Ancient Mars may have had an active sulfur cycle. In situ analyses by the Curiosity rover reveal large variations in the current sulfur isotopic composition of Martian sediments that can be explained by geologic and atmospheric processes.

    • H. B. Franz
    • A. C. McAdam
    • B. Sutter
    Research
    Nature Geoscience
    Volume: 10, P: 658-662
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • Here, the authors perform large trans-ancestry fine-mapping analyses identifying large numbers of association signals and putative target genes for colorectal cancer risk, advancing our understanding of the genetic and biological basis of this cancer.

    • Zhishan Chen
    • Xingyi Guo
    • Wei Zheng
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-17
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24
  • Some cancer patients first present with metastases where the location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

    • Wei Jiao
    • Gurnit Atwal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12