Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 1524 results
Advanced filters: Author: Christian Cruz Clear advanced filters
  • Analysis combining multiple global tree databases reveals that whether a location is invaded by non-native tree species depends on anthropogenic factors, but the severity of the invasion depends on the native species diversity.

    • Camille S. Delavaux
    • Thomas W. Crowther
    • Daniel S. Maynard
    ResearchOpen Access
    Nature
    Volume: 621, P: 773-781
  • While the photoreceptor outer segments in the bird outer retina have access to oxygen, the inner retina operates under chronic anoxia, supported by anaerobic glycolysis in the retinal neurons.

    • Christian Damsgaard
    • Mia Viuf Skøtt
    • Jens Randel Nyengaard
    Research
    Nature
    P: 1-7
  • Caspase 8 protein expression is largely absent in small cell lung cancer (SCLC) patients. Here, the authors generate a caspase 8 deletion SCLC mouse model and show that it promotes a neuronal progenitor-like cell state and pre-tumoral immunosuppression triggered by necroptosis that promotes metastasis.

    • Ariadne Androulidaki
    • Fanyu Liu
    • Silvia von Karstedt
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-17
  • While the emergence of immune checkpoint inhibitors has improved outcomes in patients with small cell lung cancer (SCLC), tumour that develop means of immune evasion become resistant. Here, the authors report that ERBB2 signalling induces loss of MHC Class I expression and subsequently immune evasion in preclinical models of SCLC.

    • Lydia Meder
    • Charlotte I. Orschel
    • Roland T. Ullrich
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-19
  • Yashinskie, Zhu and colleagues show that p53 activation triggers increased synthesis and accumulation of phospholipids, with enhanced activation of autophagy and lysosomal catabolism programmes and increased reliance on lipid headgroup recycling.

    • Jossie J. Yashinskie
    • Xianbing Zhu
    • Lydia W. S. Finley
    ResearchOpen Access
    Nature Cell Biology
    P: 1-11
  • The binding of a DARPin to p53 displaces the human papillomavirus (HPV) E6 protein and stabilizes p53 in HPV-infected cells. This interaction reactivates a p53-dependent transcriptional program, suggesting a potential new therapeutic strategy for treating HPV-induced cancers.

    • Philipp Münick
    • Alexander Strubel
    • Volker Dötsch
    Research
    Nature Structural & Molecular Biology
    Volume: 32, P: 790-801
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • The t(8;21) translocation is often found in acute myeloid leukaemia but is not sufficient for development of the disease. In this study, the authors identify frequent mutations in the transcriptional repressor, ZBTB7A, in these patients and show that the mutations reduce DNA binding activity.

    • Luise Hartmann
    • Sayantanee Dutta
    • Philipp A. Greif
    ResearchOpen Access
    Nature Communications
    Volume: 7, P: 1-7
  • A natural circular RNA termed ciRS-7 is shown to function as a negative regulator of microRNA; ciRS-7 acts as an efficient sponge for the microRNA miR-7, and is resistant to the usual microRNA-mediated degradation pathway of exonucleolytic RNA decay.

    • Thomas B. Hansen
    • Trine I. Jensen
    • Jørgen Kjems
    Research
    Nature
    Volume: 495, P: 384-388
  • Myocardin-related transcription factors (MRTFs) increase muscle growth and regeneration. Here, Hinkel et al. show that MRTFs also promote microvessel growth and maturation in chronic ischaemic disease of the heart or peripheral muscle by increasing the expression of the pro-angiongenic factors, CCN1 and CCN2.

    • Rabea Hinkel
    • Teresa Trenkwalder
    • Christian Kupatt
    Research
    Nature Communications
    Volume: 5, P: 1-10
  • The type I interferon response is suppressed during early development, making embryos susceptible to pathogens. Here, the authors show that this suppression contributes to normal development by preventing an aberrant immune response against endogenous double stranded RNAs.

    • Jeroen Witteveldt
    • Zicong Liu
    • Sara Macias
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-19
  • How neurons produce energy to fuel fast axonal transport is only partially understood. Authors here report that most glycolytic enzymes are enriched in motile vesicles, and such glycolytic machinery can produce ATP autonomously to propel vesicle movement along microtubules in a cell-free assay.

    • María-Victoria Hinckelmann
    • Amandine Virlogeux
    • Frédéric Saudou
    ResearchOpen Access
    Nature Communications
    Volume: 7, P: 1-13
  • Geminin regulates DNA replication by binding CDT1 and preventing MCM helicase loading. Using a reconstituted system and structural modelling, the authors find geminin inhibits via steric clash with MCM, not by blocking the CDT1–MCM interface. Combined with CDK activity, it fully halts licensing.

    • Joshua Tomkins
    • Lucy V. Edwardes
    • Christian Speck
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-23
  • Here the authors report that brown adipocyte-derived vaspin reduces heat-producing activity in brown fat by blocking adrenergic signals, helping to regulate energy expenditure and maintain metabolic balance.

    • Inka Rapöhn
    • Helen Broghammer
    • Juliane Weiner
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-15
  • In this study the authors consider the structural variants (SVs) present within cancer cases of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. They report hundreds of genes, including known cancer-associated genes for which the nearby presence of a SV breakpoint is associated with altered expression.

    • Yiqun Zhang
    • Fengju Chen
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • Wastewater-based surveillance tends to focus on specific pathogens. Here, the authors mapped the wastewater virome from 62 cities worldwide to identify over 2,500 viruses, revealing city-specific virome fingerprints and showing that wastewater metagenomics enables early detection of emerging viruses.

    • Nathalie Worp
    • David F. Nieuwenhuijse
    • Miranda de Graaf
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-19
  • The DNA-dependent protease SPRTN cleaves toxic DNA-protein crosslinks (DPCs). Here, the authors show that SPRTN is activated by DPC-ubiquitylation through an allosteric ubiquitin binding interface. This regulatory mechanism enables precise control of SPRTN activity during DNA repair.

    • Sophie Dürauer
    • Hyun-Seo Kang
    • Julian Stingele
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-17
  • Kyle Gaulton, Mark McCarthy, Andrew Morris and colleagues report fine mapping and genomic annotation of 39 established type 2 diabetes susceptibility loci. They find that the set of potential causal variants is enriched for overlap with FOXA2 binding sites in human islet and liver cells, and they show that a likely causal variant near MTNR1B increases FOXA2-bound enhancer activity, providing a molecular mechanism to explain the effect of this locus on disease risk.

    • Kyle J Gaulton
    • Teresa Ferreira
    • Andrew P Morris
    Research
    Nature Genetics
    Volume: 47, P: 1415-1425
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • Some cancer patients first present with metastases where the location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

    • Wei Jiao
    • Gurnit Atwal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Species’ traits and environmental conditions determine the abundance of tree species across the globe. Here, the authors find that dominant tree species are taller and have softer wood compared to rare species and that these trait differences are more strongly associated with temperature than water availability.

    • Iris Hordijk
    • Lourens Poorter
    • Thomas W. Crowther
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-15
  • The variability in clinical outcomes of SARS-CoV-2 infection is partly due to deficiencies in production or response to type I interferons (IFN). Here, the authors describe a FIP200-dependent lysosomal degradation pathway, independent of canonical autophagy and type I IFN, that restricts SARS-CoV-2 replication, offering insights into critical COVID-19 pneumonia mechanisms.

    • Lili Hu
    • Renee M. van der Sluis
    • Trine H. Mogensen
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-23
  • The expression of oncogenic MYC paralogs in small cell lung cancer is mutually exclusive. In this study, the authors show that MYC, but not MYCN or MYCL, represses BCL2, resulting in cells that are uniquely sensitive to apoptosis, and find that CHK1 and AURKA inhibitors may be useful for treating these cancers.

    • Marcel A. Dammert
    • Johannes Brägelmann
    • Martin L. Sos
    ResearchOpen Access
    Nature Communications
    Volume: 10, P: 1-11
  • Hutchinson-Gilford Progeria Syndrome is characterized by premature aging with cardiovascular disease being the main cause of death. Here the authors show that inhibition of the NAT10 enzyme enhances cardiac function and fitness, and reduces age-related phenotypes in a mouse model of premature aging.

    • Gabriel Balmus
    • Delphine Larrieu
    • Stephen P. Jackson
    ResearchOpen Access
    Nature Communications
    Volume: 9, P: 1-14