Radiofrequency pulses of different shapes can increase the efficiency of applications such as broadcasting or medical imaging, but finding the optimal shape for a specific use can be computationally costly. Shin and colleagues present a new method based on deep reinforcement learning to design radiofrequency pulses for use in MRI, which is demonstrated to cover different types of optimization goals for each application.
- Dongmyung Shin
- Younghoon Kim
- Jongho Lee