Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 473 results
Advanced filters: Author: Markus A. Schmidt Clear advanced filters
  • How landscapes are arranged affects soil pathogenic fungi worldwide. The authors reveal the global pattern and pronounced scale-dependency of landscape complexity and land-cover quantity on soil pathogenic fungal diversity.

    • Yawen Lu
    • Nico Eisenhauer
    • Carlos A. Guerra
    ResearchOpen Access
    Nature Communications
    Volume: 17, P: 1-15
  • CellSAM uses an object detector, CellFinder, to detect cells and prompt the Segment Anything Model (SAM) to generate segmentations. This universal model achieves human-level performance across a range of bioimaging data encompassing mammalian cells, yeast and bacteria.

    • Markus Marks
    • Uriah Israel
    • David Van Valen
    ResearchOpen Access
    Nature Methods
    Volume: 22, P: 2585-2593
  • In quantum information technology the output of one element often does not match the required frequency and bandwidth of the input of the next element. Here, Allgaieret al. demonstrate simultaneous frequency and bandwidth conversion of single photons without changing their quantum statistics.

    • Markus Allgaier
    • Vahid Ansari
    • Christine Silberhorn
    ResearchOpen Access
    Nature Communications
    Volume: 8, P: 1-6
  • A large genome-wide association study of more than 5 million individuals reveals that 12,111 single-nucleotide polymorphisms account for nearly all the heritability of height attributable to common genetic variants.

    • Loïc Yengo
    • Sailaja Vedantam
    • Joel N. Hirschhorn
    ResearchOpen Access
    Nature
    Volume: 610, P: 704-712
  • Supercontinuum light sources offer broad spectral coverage for advanced photonics. Here, authors demonstrate programmable liquid core fibers with local temperature controlled dispersion and particle swarm optimization, enabling real time spectral shaping with enhanced power and flatness.

    • Johannes Hofmann
    • Ramona Scheibinger
    • Markus A. Schmidt
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-12
  • A genome-wide association meta-analysis study of blood lipid levels in roughly 1.6 million individuals demonstrates the gain of power attained when diverse ancestries are included to improve fine-mapping and polygenic score generation, with gains in locus discovery related to sample size.

    • Sarah E. Graham
    • Shoa L. Clarke
    • Cristen J. Willer
    Research
    Nature
    Volume: 600, P: 675-679
  • Two-dimensional conjugated metal-organic frameworks (2D c-MOFs) are emerging candidates for organic 2D crystal materials, but the precise implantation of chirality has yet to be demonstrated. Here, the authors report a side chain-induced chirality amplification strategy to achieve tunable chiral expression in 2D c-MOFs.

    • Shiyi Feng
    • Yang Lu
    • Xinliang Feng
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-9
  • Plasmonic nanoparticles are useful as optical sensors, but their spectral resolution is hindered by the linewidth of the plasmon resonance. Schmidtet al. find that coupling this resonance to a microcavity creates hybrid modes with enhanced sensing figure-of-merit and improved frequency resolution.

    • Markus A. Schmidt
    • Dang Yuan Lei
    • Stefan A. Maier
    ResearchOpen Access
    Nature Communications
    Volume: 3, P: 1-8
  • Astrocytes drive multiple sclerosis (MS) by enhancing inflammation. Here, the authors show that the deubiquitinase OTUD7B in astrocytes protects mice from experimental autoimmune encephalomyelitis (EAE), a model of MS, by reducing inflammation and stabilizing GFAP thereby physically restricting inflammation.

    • Kunjan Harit
    • Wenjing Yi
    • Dirk Schlüter
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-19
  • Inbreeding depression has been observed in many different species, but in humans a systematic analysis has been difficult so far. Here, analysing more than 1.3 million individuals, the authors show that a genomic inbreeding coefficient (FROH) is associated with disadvantageous outcomes in 32 out of 100 traits tested.

    • David W Clark
    • Yukinori Okada
    • James F Wilson
    ResearchOpen Access
    Nature Communications
    Volume: 10, P: 1-17
  • Mannosyl-queuosine (manQ) is a non-canonical RNA nucleoside present in the anticodon loop of certain tRNAs. Here, the authors use a combination of total synthesis and mass spectrometry to contradict the literature-reported structure and show that manQ features an alpha-allyl connectivity of its mannose moiety.

    • Markus Hillmeier
    • Mirko Wagner
    • Thomas Carell
    ResearchOpen Access
    Nature Communications
    Volume: 12, P: 1-9
  • Algae beds are a promising resource for bio-energy and gas production, but their productivity is often limited by solar energy harvesting efficiency. Wondraczek et al. promote algal growth by using photoluminescent phosphor, which shifts the light spectrum to better match the algal adsorption band.

    • Lothar Wondraczek
    • Miroslaw Batentschuk
    • Christoph J. Brabec
    ResearchOpen Access
    Nature Communications
    Volume: 4, P: 1-6
  • A cross-ancestry meta-analysis of genome-wide association studies identifies association signals for stroke and its subtypes at 89 (61 new) independent loci, reveals putative causal genes, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as potential drug targets, and provides cross-ancestry integrative risk prediction.

    • Aniket Mishra
    • Rainer Malik
    • Stephanie Debette
    ResearchOpen Access
    Nature
    Volume: 611, P: 115-123
  • In two-dimensional spin-polarized systems, the valleys in the conduction bands could be useful for spintronics applications if they can be efficiently spin polarized. Here, the authors exploit the Rashba effect to achieve 100% spin-polarized valleys on a silicon surface loaded with thallium.

    • Kazuyuki Sakamoto
    • Tae-Hwan Kim
    • Tatsuki Oda
    Research
    Nature Communications
    Volume: 4, P: 1-6
  • Cortex morphology varies with age, cognitive function, and in neurological and psychiatric diseases. Here the authors report 160 genome-wide significant associations with thickness, surface area and volume of the total cortex and 34 cortical regions from a GWAS meta-analysis in 22,824 adults.

    • Edith Hofer
    • Gennady V. Roshchupkin
    • Sudha Seshadri
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • Meta-analysis of genome-wide association studies on Alzheimer’s disease and related dementias identifies new loci and enables generation of a new genetic risk score associated with the risk of future Alzheimer’s disease and dementia.

    • Céline Bellenguez
    • Fahri Küçükali
    • Jean-Charles Lambert
    ResearchOpen Access
    Nature Genetics
    Volume: 54, P: 412-436
  • The wave nature of light and particles is of interest to the fundamental quantum mechanics. Here the authors show the double-slit interference effect in the strong-field ionization of neon dimers by employing COLTRIMS method to record the momentum distribution of the photoelectrons in the molecular frame

    • Maksim Kunitski
    • Nicolas Eicke
    • Reinhard Dörner
    ResearchOpen Access
    Nature Communications
    Volume: 10, P: 1-7
  • Carotid intima-media thickness (cIMT) and plaque are associated with subclinical atherosclerosis and coronary heart disease (CHD). Here, the authors identify and prioritize genetic loci for cIMT and plaque by GWAS and colocalization approaches and further demonstrate genetic correlation with CHD and stroke.

    • Nora Franceschini
    • Claudia Giambartolomei
    • Christopher J. O’Donnell
    ResearchOpen Access
    Nature Communications
    Volume: 9, P: 1-14
  • Genome-wide analysis identifies variants associated with the volume of seven different subcortical brain regions defined by magnetic resonance imaging. Implicated genes are involved in neurodevelopmental and synaptic signaling pathways.

    • Claudia L. Satizabal
    • Hieab H. H. Adams
    • M. Arfan Ikram
    Research
    Nature Genetics
    Volume: 51, P: 1624-1636
  • Particle radiation studies have been one of the elementary keystones since the dawn of the nuclear physics. Here, the authors discovered the heaviest proton emitting isotope to date, 188At, that points to a trend change in binding energy systematics, further implying a novel interaction in heavy nuclei.

    • Henna Kokkonen
    • Kalle Auranen
    • Martin Venhart
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-6
  • Some cancer patients first present with metastases where the location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

    • Wei Jiao
    • Gurnit Atwal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Analysis of soundscape data from 139 globally distributed sites reveals that sounds of biological origin exhibit predictable rhythms depending on location and season, whereas sounds of anthropogenic origin are less predictable. Comparisons between paired urban–rural sites show that urban green spaces are noisier and dominated by sounds of technological origin.

    • Panu Somervuo
    • Tomas Roslin
    • Otso Ovaskainen
    ResearchOpen Access
    Nature Ecology & Evolution
    Volume: 9, P: 1585-1598
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • A genetic study identifies hundreds of loci associated with risk tolerance and risky behaviors, finds evidence of substantial shared genetic influences across these phenotypes, and implicates genes involved in neurotransmission.

    • Richard Karlsson Linnér
    • Pietro Biroli
    • Jonathan P. Beauchamp
    Research
    Nature Genetics
    Volume: 51, P: 245-257
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101