Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 117 results
Advanced filters: Author: Martin W. Bader Clear advanced filters
  • OLED materials based on thermally activated delayed fluorescence have promising efficiency. Here, the authors investigate an organometallic multicore Cu complex as luminophore, by pump-probe X-ray techniques at three different facilities deriving a complete picture of the charge transfer in the triplet excited state.

    • Grigory Smolentsev
    • Christopher J. Milne
    • Matthias Vogt
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-9
  • White adipose tissue (WAT) dysfunction leads to ageing-related metabolic disorders. Here, the authors show that the FMO3-TMAO axis in adipocytes induces senescence and inflammation in WAT microenvironment via NLRP3 inflammasome, leading to systemic glucose, lipid, and energy dysregulation in ageing

    • Thashma Ganapathy
    • Juntao Yuan
    • Kenneth King-yip Cheng
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-23
  • Despite its impressive mechanical and electronic properties, graphene’s magnetic characteristics are poor. However, adsorbed organic molecules can give the material magnetic functionality, and the magnetic moment remains when the molecules combine to form dimers or even a continuous monolayer.

    • Manuela Garnica
    • Daniele Stradi
    • Rodolfo Miranda
    Research
    Nature Physics
    Volume: 9, P: 368-374
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • Complexes of iron in high oxidation states play a pivotal role as active intermediates in numerous catalytic processes. Now, using a multimethod approach on a single molecular system, it has been shown that a stable high-valent Fe(VI) nitride can be converted to a reactive, superoxidized, heptavalent Fe(VII) nitride.

    • Martin Keilwerth
    • Weiqing Mao
    • Karsten Meyer
    ResearchOpen Access
    Nature Chemistry
    Volume: 16, P: 514-520
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • In colorectal cancer (CRC), finding loci associated with risk may give insight into disease aetiology. Here, the authors report a genome-wide association analysis in Europeans of 34,627 CRC cases and 71,379 controls, and find 31 new risk loci and 17 new risk SNPs at previously reported loci.

    • Philip J. Law
    • Maria Timofeeva
    • Malcolm G. Dunlop
    ResearchOpen Access
    Nature Communications
    Volume: 10, P: 1-15
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • Interfaces between organic molecules and metal surfaces have a key role in determining the performance of many emerging technologies. Now an intensive experimental study — supported by calculations — of tetracyano-p-quinodimethane molecules on a copper surface, reveals structural rearrangement of both the organic molecules and the surface atoms after charge transfer across the interface.

    • Tzu-Chun Tseng
    • Christian Urban
    • Rodolfo Miranda
    Research
    Nature Chemistry
    Volume: 2, P: 374-379
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101
  • In this study the authors consider the structural variants (SVs) present within cancer cases of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. They report hundreds of genes, including known cancer-associated genes for which the nearby presence of a SV breakpoint is associated with altered expression.

    • Yiqun Zhang
    • Fengju Chen
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • Some cancer patients first present with metastases where the location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

    • Wei Jiao
    • Gurnit Atwal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Organic functionalization is key to the development of graphene-based functional composites, yet selective covalent functionalization is hindered by graphene chemical inertness. Here, the authors demonstrate a versatile route to graphene covalent bonding with amino-terminated organic molecules.

    • Rebeca A. Bueno
    • José I. Martínez
    • José A. Martín-Gago
    ResearchOpen Access
    Nature Communications
    Volume: 8, P: 1-10
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • Whole-genome sequencing, transcriptome-wide association and fine-mapping analyses in over 7,000 individuals with critical COVID-19 are used to identify 16 independent variants that are associated with severe illness in COVID-19.

    • Athanasios Kousathanas
    • Erola Pairo-Castineira
    • J. Kenneth Baillie
    ResearchOpen Access
    Nature
    Volume: 607, P: 97-103
  • Citizen science taps the efforts of non-experts. Here, authors describe Drugit, an extension of the crowdsourcing game Foldit, and its use in designing a non-peptide binder of Von Hippel Lindau E3 ligase for use with proteolysis targeting chimeras.

    • Thomas Scott
    • Christian Alan Paul Smethurst
    • Rocco Moretti
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-11
  • In mouse and nonhuman primate models, treatment with selective, long-acting neurokinin 2 receptor agonists aids weight loss by suppressing appetite and increasing energy expenditure, as well as by increasing insulin sensitivity.

    • Frederike Sass
    • Tao Ma
    • Zachary Gerhart-Hines
    ResearchOpen Access
    Nature
    Volume: 635, P: 987-1000
  • The electronic features of graphene/silicon carbide have been well studied experimentally but theoretical investigations are still preliminary. Here, many-body perturbation theory reveals the electronic and optical characteristics of this interface and shows its advantages for optoelectronics.

    • Masoud Mansouri
    • Cristina Díaz
    • Fernando Martín
    ResearchOpen Access
    Communications Materials
    Volume: 5, P: 1-8
  • This study reports adhibin, a synthetic carbazole that suppresses the migratory and adhesive properties of cancer cells by a mechanism of targeted RhoGAP class-IX myosin inhibition and selective RhoGTPase interference, both translating into migrastatic activity, opening other perspectives in cancer therapy and basic research.

    • Despoina Kyriazi
    • Lea Voth
    • Georgios Tsiavaliaris
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-25
  • This Roadmap presents and outlines the creation of the Human Liver Cell Atlas as a reference map and resource for the liver community, providing an overview of the steps needed to build the atlas, as well as outlining the major challenges and potential of this venture.

    • Sarah A. Taylor
    • Gary D. Bader
    • Mei Zhen
    Reviews
    Nature Reviews Gastroenterology & Hepatology
    Volume: 23, P: 97-109
  • Focusing on two ill-characterized subtypes of medulloblastoma (group 3 and group 4), this study identifies prevalent genomic structural variants that are restricted to these two subtypes and independently bring together coding regions of GFI1 family proto-oncogenes with active enhancer elements, leading to their mutually exclusive oncogenic activation.

    • Paul A. Northcott
    • Catherine Lee
    • Stefan M. Pfister
    Research
    Nature
    Volume: 511, P: 428-434
  • Analysis of whole-genome sequencing data across 2,658 tumors spanning 38 cancer types shows that chromothripsis is pervasive, with a frequency of more than 50% in several cancer types, contributing to oncogene amplification, gene inactivation and cancer genome evolution.

    • Isidro Cortés-Ciriano
    • Jake June-Koo Lee
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 331-341
  • Proxy reconstructions show a decreasing trend from the Middle to Late Holocene, which conflicts with model results showing an increasing trend. Statistical analysis of model output shows that these conflicting results originate from two distinct modes of variability, which dominate at different regions and times.

    • Jürgen Bader
    • Johann Jungclaus
    • Martin Claussen
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-8