Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 1906 results
Advanced filters: Author: Peter J. Anderson Clear advanced filters
  • Random lasing in the presence of nonlinearities and disordered gain media is still poorly understood. Researchers now present a semiclassical theory for multimode random lasing in the strongly scattering regime. They show that Anderson localization — a wave-interference effect — is not affected by the presence of nonlinearities, but instead suppresses interactions between simultaneously lasing modes.

    • Peter Stano
    • Philippe Jacquod
    Research
    Nature Photonics
    Volume: 7, P: 66-71
  • EGFR inhibitors are standard of care in patients with EGFR-mutant non-small cell lung cancer (NSCLC) but resistance often develops. Here the authors report that the evolution of EGFR inhibitor resistance in EGFR-mutant NSCLC results in a sensitivity to the compound, MCB-613, and investigate the underlying mechanism of action.

    • Christopher F. Bassil
    • Kerry Dillon
    • Kris C. Wood
    ResearchOpen Access
    Nature Communications
    P: 1-20
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • Climate change can alter when and how animals grow, breed, and migrate, but it is unclear whether this allows populations to persist. This global study shows that shifts in seasonal timing are key to helping vertebrate species maintain population growth under global warming.

    • Viktoriia Radchuk
    • Carys V. Jones
    • Martijn van de Pol
    ResearchOpen Access
    Nature Communications
    Volume: 17, P: 1-14
  • Prostate cancer incidence and mortality rates vary across males from diverse populations. Here, the authors perform a proteome-wide association study across different populations and establish population-specific genetic prediction models.

    • Hua Zhong
    • Jingjing Zhu
    • Lang Wu
    ResearchOpen Access
    Nature Communications
    P: 1-11
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • In this study the authors consider the structural variants (SVs) present within cancer cases of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. They report hundreds of genes, including known cancer-associated genes for which the nearby presence of a SV breakpoint is associated with altered expression.

    • Yiqun Zhang
    • Fengju Chen
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24
  • Some cancer patients first present with metastases where the location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

    • Wei Jiao
    • Gurnit Atwal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101
  • How landscapes are arranged affects soil pathogenic fungi worldwide. The authors reveal the global pattern and pronounced scale-dependency of landscape complexity and land-cover quantity on soil pathogenic fungal diversity.

    • Yawen Lu
    • Nico Eisenhauer
    • Carlos A. Guerra
    ResearchOpen Access
    Nature Communications
    Volume: 17, P: 1-15
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • The early genetic evolution of uveal melanoma (UM) remains poorly understood. Here, the authors perform genetic profiling of 1140 primary UMs, including 131 small early-stage tumours, finding that most genetic driver aberrations have occurred by the time small tumours are biopsied; in addition, the15-gene expression profile discriminant score can predict the transition from low- to high-risk tumours.

    • James J. Dollar
    • Christina L. Decatur
    • J. William Harbour
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-12
  • The authors uncover a direct, BAI1-dependent, role for C1q in the control of neural stem cell proliferation and quiescence via MDM2–p53 and p32, a complement cascade-independent mechanism of C1q action that has implications for central nervous system health and disease.

    • Katja M. Piltti
    • Anita Lakatos
    • Aileen J. Anderson
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-18
  • As presented at the ESMO Congress 2025: In patients with locally advanced or metastatic solid tumours, including mesothelioma, treatment with a first-in-class inhibitor of the Hippo−YAP−TEAD pathway was safe and led to encouraging clinical response rates in patients with mesothelioma.

    • Timothy A. Yap
    • David J. Kwiatkowski
    • Hedy L. Kindler
    Research
    Nature Medicine
    Volume: 31, P: 4281-4290
  • Polo-like kinase 3 (Plk3) has a tumor suppressive role through the induction of apoptosis, however, the mechanism underlying its activation is unclear. Here, in pancreatic cancer, the authors show that activation of Plk3 is dependent on its cleavage into p41Plk3, by the metalloendopeptidase nardilysin.

    • Jie Fu
    • Jianhua Ling
    • Paul J. Chiao
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-19
  • High-depth sequencing of non-cancerous tissue from patients with metastatic cancer reveals single-base mutational signatures of alcohol, smoking and cancer treatments, and reveals how exogenous factors, including cancer therapies, affect somatic cell evolution.

    • Oriol Pich
    • Sophia Ward
    • Nicholas McGranahan
    ResearchOpen Access
    Nature
    P: 1-11
  • Analysis of whole-genome sequencing data across 2,658 tumors spanning 38 cancer types shows that chromothripsis is pervasive, with a frequency of more than 50% in several cancer types, contributing to oncogene amplification, gene inactivation and cancer genome evolution.

    • Isidro Cortés-Ciriano
    • Jake June-Koo Lee
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 331-341
  • An analysis of 24,202 critical cases of COVID-19 identifies potentially druggable targets in inflammatory signalling (JAK1), monocyte–macrophage activation and endothelial permeability (PDE4A), immunometabolism (SLC2A5 and AK5), and host factors required for viral entry and replication (TMPRSS2 and RAB2A).

    • Erola Pairo-Castineira
    • Konrad Rawlik
    • J. Kenneth Baillie
    ResearchOpen Access
    Nature
    Volume: 617, P: 764-768
  • Analysis of mitochondrial genomes (mtDNA) by using whole-genome sequencing data from 2,658 cancer samples across 38 cancer types identifies hypermutated mtDNA cases, frequent somatic nuclear transfer of mtDNA and high variability of mtDNA copy number in many cancers.

    • Yuan Yuan
    • Young Seok Ju
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 342-352
  • A lot of theoretical work on the Kondo effect has focused on spin 1/2 systems, but the characterization of a single-spin 1/2 atom or molecule in the weak coupling regime has been missing. Here, the authors close this gap with a scanning tunneling spectroscopy study of an organic radical on a gold surface.

    • Yong-hui Zhang
    • Steffen Kahle
    • Klaus Kern
    ResearchOpen Access
    Nature Communications
    Volume: 4, P: 1-6