Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 196 results
Advanced filters: Author: Phillip Lin Clear advanced filters
  • Large-effect variants in autism remain elusive. Here, the authors use long-read sequencing to assemble phased genomes for 189 individuals, identifying pathogenic variants in TBL1XR1, MECP2, and SYNGAP1, plus nine candidate structural variants missed by short-read methods.

    • Yang Sui
    • Jiadong Lin
    • Evan E. Eichler
    ResearchOpen Access
    Nature Communications
    P: 1-16
  • Metformin may serve as a non-toxic intervention to inhibit mitochondrial metabolism and slow DNMT3A-R882 clonal haematopoiesis expansion, thus delaying or averting progression to acute myeloid leukaemia.

    • Malgorzata Gozdecka
    • Monika Dudek
    • George S. Vassiliou
    ResearchOpen Access
    Nature
    Volume: 642, P: 431-441
  • Two studies in nematodes revolutionized our understanding of gene regulation by identifying and functionally characterizing the first microRNA, lin-4.

    • Phillip D. Zamore
    Research Highlights
    Nature Reviews Molecular Cell Biology
    Volume: 21, P: 565
  • Pressure overload in the heart, such as from aortic stenosis, triggers early molecular changes before visible damage occurs. Here, the authors show that combining proteomics, transcriptomics, and genetic data reveals key drivers of heart failure, highlighting potential targets for treatment.

    • Brian R. Lindman
    • Andrew S. Perry
    • Sammy Elmariah
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-16
  • The MET receptor is frequently activated in cancer. Here, the authors show that in head and neck and lung squamous carcinoma, a polymorphic MET variant enhances binding to HER2, resulting in activation of HER2 signalling and progression of the cancers.

    • Li Ren Kong
    • Nur Afiqah Binte Mohamed Salleh
    • Boon Cher Goh
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14
  • Here the authors perform a trans expression quantitative trait locus meta-analysis study of over 3,700 people and link a USP18 variant to expression of 50 inflammation genes and lupus risk, highlighting how genetic regulation of immune responses drives autoimmune disease and informs new therapies.

    • Krista Freimann
    • Anneke Brümmer
    • Kaur Alasoo
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-15
  • Secondary malignancies and chimeric antigen receptor (CAR)-T-derived malignant T cell transformation have been reported after CAR-T therapy. Here, the authors describe a patient with diffuse large B-cell lymphoma (DLBCL) who developed new lymphadenopathy 2.5 years after CAR-T in the context of COVID-19 infection with histopathologic features consistent with T-cell lymphoma (TCL).

    • Katie Maurer
    • Jackson A. Weir
    • Caron Jacobson
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-9
  • The fusion gene ZMYND11-MBTD1 (ZM) is present in a subgroup of patients with acute myeloid leukaemia (AML). Here, the authors show that ZM expression induces AML in a murine model though activating the NuA4/TIP60 histone acetyltransferase complex.

    • Jie Li
    • Phillip M. Galbo Jr.
    • Gang Greg Wang
    ResearchOpen Access
    Nature Communications
    Volume: 12, P: 1-18
  • The immune receptor Transmembrane and immunoglobulin domain containing 2 (TMIGD2) mediates T-cell and nature killer cells co-stimulation upon B7-family HHLA2 engagement. Here, the authors show that TMIGD2 is expressed in Acute Myeloid Leukaemia stem cells regulating self-renewal and differentiation to facilitate leukemogenesis.

    • Hao Wang
    • R. Alejandro Sica
    • Xingxing Zang
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-17
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • A light-activated chloride pump that occurs naturally in bacteria can be transfected into neurons, thereby permitting inhibition of neural activity on a millisecond timescale. This complements an existing tool for activating neurons through a photoactivatable algal channel.

    • Feng Zhang
    • Li-Ping Wang
    • Karl Deisseroth
    Research
    Nature
    Volume: 446, P: 633-639
  • Alexander van Oudenaarden and colleagues examine microRNA-mediated regulation of gene expression using single-cell measurements of a target gene's expression. They find that microRNAs can repress gene expression either as a switch or through fine-tuning and that the strength of repression can vary widely between cells.

    • Shankar Mukherji
    • Margaret S Ebert
    • Alexander van Oudenaarden
    Research
    Nature Genetics
    Volume: 43, P: 854-859
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • Some cancer patients first present with metastases where the location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

    • Wei Jiao
    • Gurnit Atwal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101
  • In this study the authors consider the structural variants (SVs) present within cancer cases of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. They report hundreds of genes, including known cancer-associated genes for which the nearby presence of a SV breakpoint is associated with altered expression.

    • Yiqun Zhang
    • Fengju Chen
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Ming-Rong Wang, Benjamin Berman and colleagues perform whole-exome sequencing and global methylation profiling on different tumor regions of esophageal squamous cell carcinoma. They find evidence for intratumoral heterogeneity and identify late driver mutations targeting oncogenes and early driver mutations occurring in tumor-suppressor genes.

    • Jia-Jie Hao
    • De-Chen Lin
    • H Phillip Koeffler
    Research
    Nature Genetics
    Volume: 48, P: 1500-1507
  • A global network of researchers was formed to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity; this paper reports 13 genome-wide significant loci and potentially actionable mechanisms in response to infection.

    • Mari E. K. Niemi
    • Juha Karjalainen
    • Chloe Donohue
    ResearchOpen Access
    Nature
    Volume: 600, P: 472-477
  • Understanding how SARS-CoV-2 gains initial entry into the human body is a key step towards the development of prophylaxes and therapeutics for COVID-19. Here, the authors show that ACE2, the receptor for SARS-CoV-2, is abundantly expressed in the motile cilia of the human nasal and respiratory tract and is not affected by the use of angiotensin-converting enzyme inhibitors or angiotensin II receptor blockers.

    • Ivan T. Lee
    • Tsuguhisa Nakayama
    • Peter K. Jackson
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14