Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 124 results
Advanced filters: Author: Sandra Schwarz Clear advanced filters
  • Neural crest cells have been implicated in heart development, yet the mechanisms by which they act have remained elusive. Here, the authors show neural crest cells modulate Wnt signalling in cardiac progenitors, providing new insight into the mechanisms underpinning congenital heart defects.

    • Sophie Wiszniak
    • Dimuthu Alankarage
    • Quenten Schwarz
    ResearchOpen Access
    Nature Communications
    P: 1-17
  • The CMS Collaboration reports the measurement of the spin, parity, and charge conjugation properties of all-charm tetraquarks, exotic fleeting particles formed in proton–proton collisions at the Large Hadron Collider.

    • A. Hayrapetyan
    • V. Makarenko
    • A. Snigirev
    ResearchOpen Access
    Nature
    Volume: 648, P: 58-63
  • The molecular mechanisms underlying drug resistance in relapsed or refractory (rr) acute myeloid leukemia (AML) remain to be explored. Here, the use of bulk and single cell multi-omics and ex vivo drug profiling for 21 rrAML patients reveals mechanisms of resistance to the Bcl-2 inhibitor venetoclax and treatment vulnerabilities.

    • Rebekka Wegmann
    • Ximena Bonilla
    • Alexandre P. A. Theocharides
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-18
    • DAVID LAYZER
    • RANDY LEVINE
    • CHARLES KING
    Correspondence
    Nature
    Volume: 234, P: 369
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • The quark structure of the f0(980) hadron is still unknown after 50 years of its discovery. Here, the CMS Collaboration reports a measurement of the elliptic flow of the f0(980) state in proton-lead collisions at a nucleon-nucleon centre-of-mass energy of 8.16 TeV, providing strong evidence that the state is an ordinary meson.

    • A. Hayrapetyan
    • A. Tumasyan
    • A. Zhokin
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-19
  • HistoPlexer, a deep learning model, generates multiplexed protein expression maps from H&E images, capturing tumour–immune cell interactions. It outperforms baselines, enhances immune subtyping and survival prediction and offers a cost-effective tool for precision oncology.

    • Sonali Andani
    • Boqi Chen
    • Gunnar Rätsch
    ResearchOpen Access
    Nature Machine Intelligence
    Volume: 7, P: 1292-1307
  • In the Tumor Profiler proof-of-concept observational study, a multiomics approach for profiling tumors from patients with melanoma was feasible, returning data within 4 weeks and informing treatment recommendations in 75% of cases.

    • Nicola Miglino
    • Nora C. Toussaint
    • Andreas Wicki
    ResearchOpen Access
    Nature Medicine
    Volume: 31, P: 2430-2441
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • In this study the authors consider the structural variants (SVs) present within cancer cases of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. They report hundreds of genes, including known cancer-associated genes for which the nearby presence of a SV breakpoint is associated with altered expression.

    • Yiqun Zhang
    • Fengju Chen
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • Some cancer patients first present with metastases where the location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

    • Wei Jiao
    • Gurnit Atwal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Multiple types of DNA damage can lead to mutations in normal cells, ultimately contributing to the development of cancer. Here, the authors redefine the spectrum of mutational signatures linked to a particular type of DNA damage to uncover the protective role of specialized DNA repair mechanisms.

    • André Bortolini Silveira
    • Alexandre Houy
    • Marc-Henri Stern
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-17
  • Long-read single-cell RNA sequencing is capable of detecting isoform-level gene expression and genomic alterations such as mutations and gene fusions, thereby providing cell-specific genotype-phenotype information. Here, the authors use long-read scRNA-seq on metastatic ovarian cancer samples and detect cell-type specific isoforms and gene fusions that may otherwise be misclassified in short-read data.

    • Arthur Dondi
    • Ulrike Lischetti
    • Niko Beerenwinkel
    ResearchOpen Access
    Nature Communications
    Volume: 14, P: 1-19
  • Myeloid and lymphoid cells are derived from the same multipotent progenitor cell. Camargo and colleagues show that the transcription factor Mef2c restricts myeloid differentiation to favor production of B, T and natural killer cells.

    • Sandra Stehling-Sun
    • Jessica Dade
    • Fernando D Camargo
    Research
    Nature Immunology
    Volume: 10, P: 289-296
  • The extensive information capacity of DNA makes it an attractive alternative to traditional data storage. DNA-Aeon is a DNA data storage solution that can correct all error types commonly observed in DNA storage, while encoding data into sequences that meet user-defined constraints such as GC content, homopolymer length, and no undesired motifs.

    • Marius Welzel
    • Peter Michael Schwarz
    • Dominik Heider
    ResearchOpen Access
    Nature Communications
    Volume: 14, P: 1-10
  • The cryo-electron microscopy structure of the filamentous hydrogen-dependent CO2 reductase (HDCR) enzyme from Thermoanaerobacter kivui, together with enzymatic analysis and in situ cryo-electron tomography, provides insight into the high catalytic activity of HDCR.

    • Helge M. Dietrich
    • Ricardo D. Righetto
    • Jan M. Schuller
    Research
    Nature
    Volume: 607, P: 823-830
  • The role of mutations within long noncoding RNAs (lncRNAs) exons on tumour cell fitness remains to be explored. Here, the authors investigate the landscape of driver lncRNAs in primary and metastatic samples and validate the functional significance of single nucleotide variants in the NEAT1 oncogene in vitro and in vivo.

    • Roberta Esposito
    • Andrés Lanzós
    • Rory Johnson
    ResearchOpen Access
    Nature Communications
    Volume: 14, P: 1-21
  • Bipolar disorder (BD) is a severe mood disorder, which has been shown to have a large genetic component. Here the authors identify two previously unreported BD risk loci and provide further insights into the biological mechanisms underlying BD development.

    • Thomas W. Mühleisen
    • Markus Leber
    • Sven Cichon
    Research
    Nature Communications
    Volume: 5, P: 1-8
  • pH alterations are a hallmark of many pathologies including cancer and kidney disease. Here the authors describe [1,5- 13 C2]Z-OMPD as a probe for hyperpolarized 13C-MRI with good pH sensitivity and hyperpolarization properties which combined with tailored MRI protocols allow sub-minute imaging of pH, renal perfusion and filtration simultaneously.

    • Martin Grashei
    • Pascal Wodtke
    • Franz Schilling
    ResearchOpen Access
    Nature Communications
    Volume: 14, P: 1-17
  • Rengachari et al. provide a structural investigation of Pol II initiation at snRNA gene promoters and find that the snRNA-activating protein complex enables DNA opening and transcription initiation independent of TFIIE and TFIIH in vitro.

    • Srinivasan Rengachari
    • Sandra Schilbach
    • Patrick Cramer
    ResearchOpen Access
    Nature Structural & Molecular Biology
    Volume: 29, P: 1159-1169
  • Analysis of ancient DNA from 424 individuals in the Avar period, from the sixth to the ninth century AD, reveals population movement from the steppe and the prolonged existence of a steppe nomadic descent system centred around patrilineality and female exogamy in central Europe.

    • Guido Alberto Gnecchi-Ruscone
    • Zsófia Rácz
    • Zuzana Hofmanová
    ResearchOpen Access
    Nature
    Volume: 629, P: 376-383
  • He et al. develop a network-based metric of amyloid-β burden by integrating individualized brain connectomes with amyloid-PET imaging. This approach improves prediction of future cognitive decline in older adults and may support earlier identification of individuals at risk of dementia.

    • Hengda He
    • Qolamreza R. Razlighi
    • Nina Silverberg
    ResearchOpen Access
    Communications Medicine
    Volume: 5, P: 1-18