Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–10 of 10 results
Advanced filters: Author: Shunzhi Wang Clear advanced filters
  • Deep learning-based generative tools are used to design protein building blocks with well-defined directional bonding interactions, allowing the generation of a variety of scalable protein assemblies from a small set of reusable subunits.

    • Shunzhi Wang
    • Andrew Favor
    • David Baker
    ResearchOpen Access
    Nature Materials
    Volume: 24, P: 1644-1652
  • Computationally designed genetically encoded proteins can be used to target surface proteins, thereby triggering endocytosis and subsequent intracellular degradation, activating signalling or increasing cellular uptake in specific tissues.

    • Buwei Huang
    • Mohamad Abedi
    • David Baker
    ResearchOpen Access
    Nature
    Volume: 638, P: 796-804
  • The process of protein crystallization is poorly understood and difficult to program through the primary sequence. Here the authors develop a computational approach to designing three-dimensional protein crystals with prespecified lattice architectures with high accuracy.

    • Zhe Li
    • Shunzhi Wang
    • David Baker
    Research
    Nature Materials
    Volume: 22, P: 1556-1563
  • Symmetry breaking in colloidal crystals is achieved with DNA-grafted programmable atom equivalents and complementary electron equivalents, whose interactions are tuned to create anisotropic crystalline precursors with well-defined coordination geometries that assemble into distinct low-symmetry crystals.

    • Shunzhi Wang
    • Sangmin Lee
    • Chad A. Mirkin
    Research
    Nature Materials
    Volume: 21, P: 580-587
  • A de novo-designed protein that precisely assembles a chlorophyll dimer has been developed. The design matches the conformation of the native ‘special pair’ of chlorophylls that functions as the primary electron donor in natural photosynthetic reaction centers. In the designed protein, excitonically coupled chlorophylls participate in energy transfer. The proteins were also redesigned to assemble into 24-chlorophyll nanocages.

    • Nathan M. Ennist
    • Shunzhi Wang
    • David Baker
    ResearchOpen Access
    Nature Chemical Biology
    Volume: 20, P: 906-915
  • The rational design and assembly of colloidal quasicrystals is achieved by exploring the hybridization of nanoscale decahedra nanoparticles functionalized with DNA linkers.

    • Wenjie Zhou
    • Yein Lim
    • Chad A. Mirkin
    Research
    Nature Materials
    Volume: 23, P: 424-428
  • Colloidal crystals assembled from nanoscale building blocks are powerful designer materials with diverse functionalities. Here, the authors describe a colloidal crystal engineering strategy to prepare hierarchical structures from metal–organic framework nanoparticles and DNA which retain permanent porosity and catalytic activity.

    • Shunzhi Wang
    • Sarah S. Park
    • Chad A. Mirkin
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-8