Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 329 results
Advanced filters: Author: Timothy Su Clear advanced filters
  • The authors demonstrate high-fidelity multi-tone electronic control of trapped-ion qudits up to d=8 levels, enabling efficient SU(d) operations and showcasing advantage by implementing Grover’s search algorithm using encoding in a single qudit, rather than in multiple qubits.

    • Xiaoyang Shi
    • Jasmine Sinanan-Singh
    • Isaac L. Chuang
    ResearchOpen Access
    Nature Communications
    P: 1-8
  • The Taiwan Precision Medicine Initiative recruited and genotyped more than half a million Taiwanese participants, almost all of Han Chinese ancestry, and performed comprehensive genomic analyses and developed polygenic risk score prediction models for numerous health conditions.

    • Hung-Hsin Chen
    • Chien-Hsiun Chen
    • Cathy S. J. Fann
    ResearchOpen Access
    Nature
    Volume: 648, P: 128-137
  • Strongly coupled light–matter systems could offer enhanced manipulation of topological phenomena. Now, tunable non-Hermitian effects are demonstrated with exciton–polaritons induced by a twist degree of freedom.

    • Jie Liang
    • Hao Zheng
    • Rui Su
    Research
    Nature Physics
    Volume: 22, P: 151-157
  • Biomolecular phase separation arises from collective molecular interactions and is emerging as a key theme for biological function. Here the authors propose a broadly applicable method to quantify these interactions based on compositional and energetic parameters.

    • Hannes Ausserwöger
    • Ella de Csilléry
    • Tuomas P. J. Knowles
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-13
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • PPM1D is a known mediator of p53 signalling, and has been linked to treatment resistance in glioma. In this work, the authors utilise genomics, proteomics, and mouse models to determine the role of PPM1D in the development of diffuse midline glioma.

    • Prasidda Khadka
    • Zachary J. Reitman
    • Pratiti Bandopadhayay
    ResearchOpen Access
    Nature Communications
    Volume: 13, P: 1-18
  • Here, the authors sample air and surfaces in hospital rooms of COVID-19 patients, detect SARS-CoV-2 RNA in air samples of two of three tested airborne infection isolation rooms, and find surface contamination in 66.7% of tested rooms during the first week of illness and 20% beyond the first week of illness.

    • Po Ying Chia
    • Kristen Kelli Coleman
    • Daniela Moses
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-7
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • In this study the authors consider the structural variants (SVs) present within cancer cases of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. They report hundreds of genes, including known cancer-associated genes for which the nearby presence of a SV breakpoint is associated with altered expression.

    • Yiqun Zhang
    • Fengju Chen
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14
  • This report describes a 3D microelectrode array integrated on a thin-film flexible cable using traditional thin-film processing techniques and direct laser writing of 3D structures at micron resolution via two-photon lithography for neural recording.

    • Morgan A. Brown
    • Kara M. Zappitelli
    • Timothy J. Gardner
    ResearchOpen Access
    Nature Communications
    Volume: 14, P: 1-11
  • Nodular lymphocyte-predominant Hodgkin lymphoma (NLPHL) is a rare cancer. Here, the authors develop a NLPHL specific model to identify 34 distinct cell states across 14 cell types that co-occur within 3 lymphocyte predominant ecotypes (LPEs) for 171 cases.

    • Ajay Subramanian
    • Shengqin Su
    • Michael Sargent Binkley
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-16
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • Some cancer patients first present with metastases where the location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

    • Wei Jiao
    • Gurnit Atwal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • In this work the authors describe antimicrobial peptides (AMPs)-driven phase transitions of intracellular nucleic acids, whereby AMPs induce compaction and phase separation of nucleic acids, resulting in their sequestration and eventual cell death.

    • Tomas Sneideris
    • Nadia A. Erkamp
    • Tuomas P. J. Knowles
    ResearchOpen Access
    Nature Communications
    Volume: 14, P: 1-16
  • RNA sequencing (RNA-seq) is increasingly being integrated into molecular tumour profiling but remains underutilized for clinical decision-making. This Perspective presents a framework for assessing the therapeutic, diagnostic and prognostic actionability of RNA-seq findings as well as an ‘actionable transcriptome’ list to help guide the application of RNA-seq findings in oncology practice.

    • Amber Johnson
    • Yifei Shen
    • Funda Meric-Bernstam
    Reviews
    Nature Reviews Clinical Oncology
    P: 1-17
  • Metal-organic frameworks (MOFs) have potential catalysis, filtration and sensing applications, but device fabrication will require controlled MOF growth. Here, α-hopeite microparticles are used to achieve spatial control of MOF nucleation, and accelerate MOF growth.

    • Paolo Falcaro
    • Anita J. Hill
    • Dario Buso
    ResearchOpen Access
    Nature Communications
    Volume: 2, P: 1-8
  • Although the number of participants is important for phenotypic prediction accuracy in brain-wide association studies using functional MRI, scanning for at least 30 min offers the greatest cost effectiveness.

    • Leon Qi Rong Ooi
    • Csaba Orban
    • Clifford R. Jack Jr
    ResearchOpen Access
    Nature
    Volume: 644, P: 731-740
  • Genetic exchange of Leishmania parasites in the sand fly host is mediated by natural IgM antibodies, providing insights that will help generate reproducible and increased recovery of backcrosses for research purposes.

    • Tiago D. Serafim
    • Eva Iniguez
    • Jesus G. Valenzuela
    Research
    Nature
    Volume: 623, P: 149-156
  • Methods to directly label active neurons are still lacking. Here the authors develop CaMPARI2, a photoconvertible fluorescent protein sensor for neuronal activity with improved brightness and calcium binding kinetics, as well as an antibody to amplify the activated sensor signal in fixed samples.

    • Benjamien Moeyaert
    • Graham Holt
    • Eric R. Schreiter
    ResearchOpen Access
    Nature Communications
    Volume: 9, P: 1-12
  • The driver mutations for the two main molecular subgroups of diffuse large B-cell lymphoma (DLBCL) are poorly defined. Here, an integrative genomics analysis identifies 3′ UTR NFKBIZ mutations within the activated B-cell DLBCL subgroup and small FCGR2B amplifications in the germinal centre B-cell DLBCL subgroup.

    • Sarah E. Arthur
    • Aixiang Jiang
    • Ryan D. Morin
    ResearchOpen Access
    Nature Communications
    Volume: 9, P: 1-14
  • Wood density is an important plant trait. Data from 1.1 million forest inventory plots and 10,703 tree species show a latitudinal gradient in wood density, with temperature and soil moisture explaining variation at the global scale and disturbance also having a role at the local level.

    • Lidong Mo
    • Thomas W. Crowther
    • Constantin M. Zohner
    ResearchOpen Access
    Nature Ecology & Evolution
    Volume: 8, P: 2195-2212
  • A central concept for characterising phase-separating systems is the phase diagram but generation of such diagrams for biomolecular systems is typically slow and low-throughput. Here the authors describe PhaseScan, a combinatorial droplet microfluidic platform for high-resolution acquisition of multidimensional biomolecular phase diagrams.

    • William E. Arter
    • Runzhang Qi
    • Tuomas P. J. Knowles
    ResearchOpen Access
    Nature Communications
    Volume: 13, P: 1-10
  • Here, the authors perform large trans-ancestry fine-mapping analyses identifying large numbers of association signals and putative target genes for colorectal cancer risk, advancing our understanding of the genetic and biological basis of this cancer.

    • Zhishan Chen
    • Xingyi Guo
    • Wei Zheng
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-17
  • Liquid crystals are used for devices with increasingly complex geometries which makes it important to understand the influence of deformation. Xia et al. measure the poorly investigated saddle-splay elastic constant by means of surface patterning and simulation for programming emergent symmetries.

    • Yu Xia
    • Andrew A. DeBenedictis
    • Shu Yang
    ResearchOpen Access
    Nature Communications
    Volume: 10, P: 1-9
  • A new class of liquid crystals is reported that undergoes light-induced ordering and order-increasing phase transitions; possible applications include ophthalmic devices, such as variable transmission sunglasses.

    • Tamas Kosa
    • Ludmila Sukhomlinova
    • Timothy J. Bunning
    Research
    Nature
    Volume: 485, P: 347-349