Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cryptic phenotypic variation emerges rapidly during the adaptive evolution of a carbapenemase

Abstract

Interactions among beneficial mutations (that is, epistasis) are often strong enough to direct adaptation through alternative mutational paths. Although alternative solutions should display similar fitness under the primary selective conditions, their properties across secondary environments may differ widely. The extent to which these cryptic differences are to be expected is largely unknown, despite their importance—for example, in identifying exploitable collateral sensitivities among mutations conferring antibiotic resistance. Here we use directed evolution to characterize the diversity of mutational paths through which the prevalent carbapenemase Klebsiella pneumoniae carbapenemase-2 can evolve high activity against the clinically relevant antibiotic ceftazidime, an initially poor substrate. We identified 40 different substitutions—including many that are common in clinical settings—spread among 18 different mutational trajectories. Initial mutations determined four major groups into which the trajectories can be classified, a signature of strong epistasis. Despite similar final ceftazidime resistance, groups diverged markedly across multiple phenotypic dimensions, from molecular traits, such as in-cell stability and catalytic efficiency, to macroscopic traits, such as growth rate and activity against other β-lactam antibiotics. Our results indicate that cryptic yet consequential phenotypic differences can accumulate rapidly under strong selection, unpredictably shaping the long-term success of resistance enzymes in their journey across hosts and environments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mutational pathways recovered during KPC-2 directed evolution for increased CAZ resistance.
Fig. 2: Adaptive landscape for all combinations of four key beneficial mutations during evolution towards CAZ resistance.
Fig. 3: Collateral sensitivity towards other β-lactams rapidly diverges during CAZ resistance evolution.
Fig. 4: Molecular traits rapidly diverge during CAZ resistance evolution.
Fig. 5: Positions and properties of accumulated mutations across rounds.

Similar content being viewed by others

Data availability

All of the data needed to replicate the findings of this study are available in the manuscript and its Supplementary Information. Source data are provided with this paper.

References

  1. Smith, J. M. & Haigh, J. The hitch-hiking effect of a favourable gene. Genet. Res. 23, 23–35 (1974).

    Article  CAS  PubMed  Google Scholar 

  2. Berry, A. J., Ajioka, J. W. & Kreitman, M. Lack of polymorphism on the Drosophila fourth chromosome resulting from selection. Genetics 129, 1111–1117 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Stephan, W. Selective sweeps. Genetics 211, 5–13 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Atwood, K. C., Schneider, L. K. & Ryan, F. J. Periodic selection in Escherichia coli. Proc. Natl Acad. Sci. USA 37, 146–155 (1951).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hermisson, J. & Pennings, P. S. Soft sweeps: molecular population genetics of adaptation from standing genetic variation. Genetics 169, 2335–2352 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schenk, M. F. et al. Population size mediates the contribution of high-rate and large-benefit mutations to parallel evolution. Nat. Ecol. Evol. 6, 439–447 (2022).

    Article  PubMed  Google Scholar 

  7. Good, B. H., McDonald, M. J., Barrick, J. E., Lenski, R. E. & Desai, M. M. The dynamics of molecular evolution over 60,000 generations. Nature 551, 45–50 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Pennings, P. S. & Hermisson, J. Soft sweeps II—molecular population genetics of adaptation from recurrent mutation or migration. Mol. Biol. Evol. 23, 1076–1084 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Lee, M.-C. & Marx, C. J. Synchronous waves of failed soft sweeps in the laboratory: remarkably rampant clonal interference of alleles at a single locus. Genetics 193, 943–952 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Blanquart, F., Kaltz, O., Nuismer, S. L. & Gandon, S. A practical guide to measuring local adaptation. Ecol. Lett. 16, 1195–1205 (2013).

    Article  PubMed  Google Scholar 

  11. Sparks, M. M., Kraft, J. C., Blackstone, K. M. S., McNickle, G. G. & Christie, M. R. Large genetic divergence underpins cryptic local adaptation across ecological and evolutionary gradients. Proc. R. Soc. B Biol. Sci. 289, 20221472 (2022).

    Article  Google Scholar 

  12. Gavrilets, S. Perspective: models of speciation: what have we learned in 40 years? Evol. Int. J. Org. Evol. 57, 2197–2215 (2003).

    Google Scholar 

  13. White, N. J. et al. Experimental evolution of local adaptation under unidimensional and multidimensional selection. Curr. Biol. 32, 1310–1318.e4 (2022).

    Article  CAS  PubMed  Google Scholar 

  14. Paaby, A. B. & Rockman, M. V. Cryptic genetic variation: evolution’s hidden substrate. Nat. Rev. Genet. 15, 247–258 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zheng, J., Payne, J. L. & Wagner, A. Cryptic genetic variation accelerates evolution by opening access to diverse adaptive peaks. Science 365, 347–353 (2019).

    Article  CAS  PubMed  Google Scholar 

  16. Bull, J. J. & Barrick, J. E. Arresting evolution. Trends Genet. 33, 910–920 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. De Kraker, M. E. A., Davey, P. G., Grundmann, H. & BURDEN study group. Mortality and hospital stay associated with resistant Staphylococcus aureus and Escherichia coli bacteremia: estimating the burden of antibiotic resistance in Europe. PLoS Med. 8, e1001104 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Chung, H. et al. Rapid expansion and extinction of antibiotic resistance mutations during treatment of acute bacterial respiratory infections. Nat. Commun. 13, 1231 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Diaz Caballero, J. et al. Selective sweeps and parallel pathoadaptation drive Pseudomonas aeruginosa evolution in the cystic fibrosis lung. mBio 6, e00981-15 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Scribner, M. R., Santos-Lopez, A., Marshall, C. W., Deitrick, C. & Cooper, V. S. Parallel evolution of tobramycin resistance across species and environments. mBio 11, e00932-20 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Baym, M., Stone, L. K. & Kishony, R. Multidrug evolutionary strategies to reverse antibiotic resistance. Science 351, aad3292 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Andersson, D. I. & Hughes, D. Antibiotic resistance and its cost: is it possible to reverse resistance? Nat. Rev. Microbiol. 8, 260–271 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Allen, R. C., Popat, R., Diggle, S. P. & Brown, S. P. Targeting virulence: can we make evolution-proof drugs? Nat. Rev. Microbiol. 12, 300–308 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Smith, P. A. & Romesberg, F. E. Combating bacteria and drug resistance by inhibiting mechanisms of persistence and adaptation. Nat. Chem. Biol. 3, 549–556 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Andersson, D. I. The biological cost of mutational antibiotic resistance: any practical conclusions? Curr. Opin. Microbiol. 9, 461–465 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Lázár, V. et al. Genome-wide analysis captures the determinants of the antibiotic cross-resistance interaction network. Nat. Commun. 5, 4352 (2014).

    Article  PubMed  Google Scholar 

  27. Imamovic, L. & Sommer, M. O. A. Use of collateral sensitivity networks to design drug cycling protocols that avoid resistance development. Sci. Transl. Med. 5, 204ra132 (2013).

    Article  PubMed  Google Scholar 

  28. Jiao, Y. J., Baym, M., Veres, A. & Kishony, R. Population diversity jeopardizes the efficacy of antibiotic cycling. Preprint at bioRxiv https://doi.org/10.1101/082107 (2016).

  29. Nichol, D. et al. Antibiotic collateral sensitivity is contingent on the repeatability of evolution. Nat. Commun. 10, 334 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Barbosa, C., Römhild, R., Rosenstiel, P. & Schulenburg, H. Evolutionary stability of collateral sensitivity to antibiotics in the model pathogen Pseudomonas aeruginosa. eLife 8, e51481 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Maltas, J. & Wood, K. B. Pervasive and diverse collateral sensitivity profiles inform optimal strategies to limit antibiotic resistance. PLoS Biol. 17, e3000515 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Barbosa, C. et al. Alternative evolutionary paths to bacterial antibiotic resistance cause distinct collateral effects. Mol. Biol. Evol. 34, 2229–2244 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mandt, R. E. et al. Diverse evolutionary pathways challenge the use of collateral sensitivity as a strategy to suppress resistance. eLife 12, e85023 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Couce, A., Rodríguez-Rojas, A. & Blázquez, J. Bypass of genetic constraints during mutator evolution to antibiotic resistance. Proc. R. Soc. B Biol. Sci. 282, 20142698 (2015).

    Article  Google Scholar 

  35. Oz, T. et al. Strength of selection pressure is an important parameter contributing to the complexity of antibiotic resistance evolution. Mol. Biol. Evol. 31, 2387–2401 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lindsey, H. A., Gallie, J., Taylor, S. & Kerr, B. Evolutionary rescue from extinction is contingent on a lower rate of environmental change. Nature 494, 463–467 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Couce, A., Rodríguez-Rojas, A. & Blázquez, J. Determinants of genetic diversity of spontaneous drug resistance in bacteria. Genetics 203, 1369–1380 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kemble, H. et al. Flux, toxicity, and expression costs generate complex genetic interactions in a metabolic pathway. Sci. Adv. 6, eabb2236 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chou, H.-H., Delaney, N. F., Draghi, J. A. & Marx, C. J. Mapping the fitness landscape of gene expression uncovers the cause of antagonism and sign epistasis between adaptive mutations. PLoS Genet. 10, e1004149 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Lagator, M., Sarikas, S., Acar, H., Bollback, J. P. & Guet, C. C. Regulatory network structure determines patterns of intermolecular epistasis. eLife 6, e28921 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Dellus-Gur, E. et al. Negative epistasis and evolvability in TEM-1 β-lactamase—the thin line between an enzyme’s conformational freedom and disorder. J. Mol. Biol. 427, 2396–2409 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Weinreich, D. M., Delaney, N. F., Depristo, M. A. & Hartl, D. L. Darwinian evolution can follow only very few mutational paths to fitter proteins. Science 312, 111–114 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Salverda, M. L. M. et al. Initial mutations direct alternative pathways of protein evolution. PLoS Genet. 7, e1001321 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. McInnes, R. S., McCallum, G. E., Lamberte, L. E. & van Schaik, W. Horizontal transfer of antibiotic resistance genes in the human gut microbiome. Curr. Opin. Microbiol. 53, 35–43 (2020).

    Article  CAS  PubMed  Google Scholar 

  45. Evans, D. R. et al. Systematic detection of horizontal gene transfer across genera among multidrug-resistant bacteria in a single hospital. eLife 9, e53886 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Schenk, M. F., Szendro, I. G., Salverda, M. L. M., Krug, J. & de Visser, J. A. G. M. Patterns of epistasis between beneficial mutations in an antibiotic resistance gene. Mol. Biol. Evol. 30, 1779–1787 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gonzalez, C. E. & Ostermeier, M. Pervasive pairwise intragenic epistasis among sequential mutations in TEM-1 β-lactamase. J. Mol. Biol. 431, 1981–1992 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Steinberg, B. & Ostermeier, M. Shifting fitness and epistatic landscapes reflect trade-offs along an evolutionary pathway. J. Mol. Biol. 428, 2730–2743 (2016).

    Article  CAS  PubMed  Google Scholar 

  49. Knies, J. L., Cai, F. & Weinreich, D. M. Enzyme efficiency but not thermostability drives cefotaxime resistance evolution in TEM-1 β-lactamase. Mol. Biol. Evol. 34, 1040–1054 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Salverda, M. L. M., Koomen, J., Koopmanschap, B., Zwart, M. P. & de Visser, J. A. G. M. Adaptive benefits from small mutation supplies in an antibiotic resistance enzyme. Proc. Natl Acad. Sci. USA 114, 12773–12778 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gniadkowski, M. Evolution of extended-spectrum beta-lactamases by mutation. Clin. Microbiol. Infect. 14, 11–32 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Ramirez, M. S., Nikolaidis, N. & Tolmasky, M. E. Rise and dissemination of aminoglycoside resistance: the aac(6)-Ib paradigm. Front. Microbiol. 4, 121 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Di Pilato, V., Pollini, S., Miriagou, V., Rossolini, G. M. & D’Andrea, M. M. Carbapenem-resistant Klebsiella pneumoniae: the role of plasmids in emergence, dissemination, and evolution of a major clinical challenge. Expert Rev. Anti Infect. Ther. 22, 25–43 (2024).

    Article  PubMed  Google Scholar 

  54. Yigit, H. et al. Novel carbapenem-hydrolyzing beta-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob. Agents Chemother. 45, 1151–1161 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Queenan, A. M. & Bush, K. Carbapenemases: the versatile β-lactamases. Clin. Microbiol. Rev. 20, 440–458 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Naas, T., Dortet, L. & Iorga, B. I. Structural and functional aspects of class A carbapenemases. Curr. Drug Targets 17, 1006–1028 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Nordmann, P., Dortet, L. & Poirel, L. Carbapenem resistance in Enterobacteriaceae: here is the storm! Trends Mol. Med. 18, 263–272 (2012).

    Article  CAS  PubMed  Google Scholar 

  58. Hobson, C. A. et al. Klebsiella pneumoniae carbapenemase variants resistant to ceftazidime-avibactam: an evolutionary overview. Antimicrob. Agents Chemother. 66, e0044722 (2022).

    Article  PubMed  Google Scholar 

  59. Naas, T. et al. Beta-lactamase database (BLDB)—structure and function. J. Enzyme Inhib. Med. Chem. 32, 917–919 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mehta, S. C., Rice, K. & Palzkill, T. Natural variants of the KPC-2 carbapenemase have evolved increased catalytic efficiency for ceftazidime hydrolysis at the cost of enzyme stability. PLoS Pathog. 11, e1004949 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Palzkill, T. Structural and mechanistic basis for extended-spectrum drug-resistance mutations in altering the specificity of TEM, CTX-M, and KPC β-lactamases. Front. Mol. Biosci. 5, 16 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Gentry, L. O. Antimicrobial activity, pharmacokinetics, therapeutic indications and adverse reactions of ceftazidime. Pharmacotherapy 5, 254–267 (1985).

    Article  CAS  PubMed  Google Scholar 

  63. Shirley, M. Ceftazidime-avibactam: a review in the treatment of serious Gram-negative bacterial infections. Drugs 78, 675–692 (2018).

    Article  CAS  PubMed  Google Scholar 

  64. Rodriguez, B. A., Girotto, J. E. & Nicolau, D. P. Ceftazidime/avibactam and ceftolozane/tazobactam: novel therapy for multidrug resistant Gram negative infections in children. Curr. Pediatr. Rev. 14, 97–109 (2018).

    Article  CAS  PubMed  Google Scholar 

  65. Sharma, R., Park, T. E. & Moy, S. Ceftazidime-avibactam: a novel cephalosporin/β-lactamase inhibitor combination for the treatment of resistant Gram-negative organisms. Clin. Ther. 38, 431–444 (2016).

    Article  CAS  PubMed  Google Scholar 

  66. Shields, R. K. et al. Emergence of ceftazidime-avibactam resistance due to plasmid-borne blaKPC-3 mutations during treatment of carbapenem-resistant Klebsiella pneumoniae infections. Antimicrob. Agents Chemother. 61, e02097-16 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Sun, Z. et al. Klebsiella pneumoniae carbapenemase variant 44 acquires ceftazidime-avibactam resistance by altering the conformation of active-site loops. J. Biol. Chem. 300, 105493 (2024).

    Article  CAS  PubMed  Google Scholar 

  68. Cano, A. V., Rozhoňová, H., Stoltzfus, A., McCandlish, D. M. & Payne, J. L. Mutation bias shapes the spectrum of adaptive substitutions. Proc. Natl Acad. Sci. USA 119, e2119720119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Woodford, N. et al. Outbreak of Klebsiella pneumoniae producing a new carbapenem-hydrolyzing class A beta-lactamase, KPC-3, in a New York Medical Center. Antimicrob. Agents Chemother. 48, 4793–4799 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kazmierczak, K. M. et al. Global dissemination of blaKPC into bacterial species beyond Klebsiella pneumoniae and in vitro susceptibility to ceftazidime-avibactam and aztreonam-avibactam. Antimicrob. Agents Chemother. 60, 4490–4500 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Szili et al. Rapid evolution of reduced susceptibility against a balanced dual-targeting antibiotic through stepping-stone mutations. Antimicrob. Agents Chemother. 63, e00207-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Rosenkilde, C. E. H. et al. Collateral sensitivity constrains resistance evolution of the CTX-M-15 β-lactamase. Nat. Commun. 10, 618 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Goulart, C. P. et al. Designing antibiotic cycling strategies by determining and understanding local adaptive landscapes. PLoS ONE 8, e56040 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Mira, P. M. et al. Rational design of antibiotic treatment plans: a treatment strategy for managing evolution and reversing resistance. PLoS ONE 10, e0122283 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Turner, J. et al. The chemical relationship among beta-lactam antibiotics and potential impacts on reactivity and decomposition. Front. Microbiol. 13, 807955 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Kinsler, G., Li, Y., Sherlock, G. & Petrov, D. A. D. A. A high-resolution two-step evolution experiment in yeast reveals a shiftfrom pleiotropic to modular adaptation. PLoS Biol. 22, e3002848 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Cooper, T. F., Ostrowski, E. A. & Travisano, M. A negative relationship between mutation pleiotropy and fitness effect in yeast. Evol. Int. J. Org. Evol. 61, 1495–1499 (2007).

    Article  Google Scholar 

  78. Nikaido, H. & Normark, S. Sensitivity of Escherichia coli to various beta-lactams is determined by the interplay of outer membrane permeability and degradation by periplasmic beta-lactamases: a quantitative predictive treatment. Mol. Microbiol. 1, 29–36 (1987).

    Article  CAS  PubMed  Google Scholar 

  79. López, C., Delmonti, J., Bonomo, R. A. & Vila, A. J. Deciphering the evolution of metallo-β-lactamases: a journey from the test tube to the bacterial periplasm. J. Biol. Chem. 298, 101665 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Guin, D. & Gruebele, M. Weak chemical interactions that drive protein evolution: crowding, sticking, and quinary structure in folding and function. Chem. Rev. 119, 10691–10717 (2019).

    Article  CAS  PubMed  Google Scholar 

  81. Meini, M.-R., Tomatis, P. E., Weinreich, D. M. & Vila, A. J. Quantitative description of a protein fitness landscape based on molecular features. Mol. Biol. Evol. 32, 1774–1787 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. López, C., Ayala, J. A., Bonomo, R. A., González, L. J. & Vila, A. J. Protein determinants of dissemination and host specificity of metallo-β-lactamases. Nat. Commun. 10, 3617 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Socha, R. D., Chen, J. & Tokuriki, N. The molecular mechanisms underlying hidden phenotypic variation among metallo-β-lactamases. J. Mol. Biol. 431, 1172–1185 (2019).

    Article  CAS  PubMed  Google Scholar 

  84. Mehlhoff, J. D. et al. Collateral fitness effects of mutations. Proc. Natl Acad. Sci. USA 117, 11597–11607 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Mehlhoff, J. D. & Ostermeier, M. Genes vary greatly in their propensity for collateral fitness effects of mutations. Mol. Biol. Evol. 40, msad038 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. González, L. J., Bahr, G., González, M. M., Bonomo, R. A. & Vila, A. J. In-cell kinetic stability is an essential trait in metallo-β-lactamase evolution. Nat. Chem. Biol. 19, 1116–1126 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Fröhlich, C. et al. Cryptic β-lactamase evolution is driven by low β-lactam concentrations. mSphere 6, e00108-21 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Tokuriki, N. et al. Diminishing returns and tradeoffs constrain the laboratory optimization of an enzyme. Nat. Commun. 3, 1257 (2012).

    Article  PubMed  Google Scholar 

  89. Morley, K. L. & Kazlauskas, R. J. Improving enzyme properties: when are closer mutations better? Trends Biotechnol. 23, 231–237 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. Barnes, M. D. et al. Klebsiella pneumoniae carbapenemase-2 (KPC-2), substitutions at Ambler position Asp179, and resistance to ceftazidime-avibactam: unique antibiotic-resistant phenotypes emerge from β-lactamase protein engineering. mBio 8, e00528-17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Alsenani, T. A. et al. Structural characterization of the D179N and D179Y variants of KPC-2 β-lactamase: Ω-loop destabilization as a mechanism of resistance to ceftazidime-avibactam. Antimicrob. Agents Chemother. 66, e02414-21 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Tooke, C. L. et al. Natural variants modify Klebsiella pneumoniae carbapenemase (KPC) acyl-enzyme conformational dynamics to extend antibiotic resistance. J. Biol. Chem. 296, 100126 (2021).

    Article  CAS  PubMed  Google Scholar 

  93. Pál, C., Papp, B. & Lázár, V. Collateral sensitivity of antibiotic-resistant microbes. Trends Microbiol. 23, 401–407 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Gullberg, E. et al. Selection of resistant bacteria at very low antibiotic concentrations. PLoS Pathog. 7, e1002158 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ribeiro, A. R., Sures, B. & Schmidt, T. C. Cephalosporin antibiotics in the aquatic environment: a critical review of occurrence, fate, ecotoxicity and removal technologies. Environ. Pollut. 241, 1153–1166 (2018).

    Article  CAS  PubMed  Google Scholar 

  96. Baquero, F. & Negri, M. C. Selective compartments for resistant microorganisms in antibiotic gradients. BioEssays 19, 731–736 (1997).

    Article  CAS  PubMed  Google Scholar 

  97. Baier, F. et al. Cryptic genetic variation shapes the adaptive evolutionary potential of enzymes. eLife 8, e40789 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Bloom, J. D. et al. Evolution favors protein mutational robustness in sufficiently large populations. BMC Biol. 5, 29 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Besenmatter, W., Kast, P. & Hilvert, D. Relative tolerance of mesostable and thermostable protein homologs to extensive mutation. Proteins 66, 500–506 (2007).

    Article  CAS  PubMed  Google Scholar 

  100. Chihoub, D. et al. The evolution of robustness and fragility during long-term bacterial adaptation. Proc. Natl Acad. Sci. USA 122, e2501901122 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Leiby, N. & Marx, C. J. Metabolic erosion primarily through mutation accumulation, and not tradeoffs, drives limited evolution of substrate specificity in Escherichia coli. PLoS Biol. 12, e1001789 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Card, K. J., LaBar, T., Gomez, J. B. & Lenski, R. E. Historical contingency in the evolution of antibiotic resistance after decades of relaxed selection. PLoS Biol. 17, e3000397 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Tenaillon, O. et al. The molecular diversity of adaptive convergence. Science 335, 457–461 (2012).

    Article  CAS  PubMed  Google Scholar 

  104. Rodríguez-Verdugo, A., Gaut, B. S. & Tenaillon, O. Evolution of Escherichia coli rifampicin resistance in an antibiotic-free environment during thermal stress. BMC Evol. Biol. 13, 50 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Pérez, M. et al. Mutual regulation between SIAH2 and DYRK2 controls hypoxic and genotoxic signaling pathways. J. Mol. Cell. Biol. 4, 316–330 (2012).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank L. J. González and A. J. Vila for valuable experimental suggestions and J. Barber and L. López-Merino for proofreading the manuscript. L.D. acknowledges support from the European Commission under the Horizon 2020 Framework Programme (Marie Skłodowska-Curie Individual Fellowship 101029953). A.C. acknowledges support from the Agencia Estatal de Investigación (Proyectos de Investigación, Desarrollo e Innovación (PID2019-110992GA-I00 and PID2022-142857NB-I00) and Centros de Excelencia Severo Ochoa (SEV-2016-0672 and CEX2020-000999-S)) and a Comunidad de Madrid Talento Fellowship (2019-T1/BIO-12882 and 2023-5A/BIO-28940).

Author information

Authors and Affiliations

Authors

Contributions

L.D. and A.C. conceived of the study idea. L.D. designed the methodology. L.D. performed the investigation with support from I.N. A.C. performed the formal analysis, supervised the study, wrote the original draft of the manuscript and acquired funding with support from L.D. A.C. and L.D. contributed equally to reviewing and editing the manuscript, with support from I.N.

Corresponding authors

Correspondence to Laura Dabos or Alejandro Couce.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks Tobias Bollenbach, Viktoria Lazar and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Resistance trajectories plotted against the number of rounds for each lineage.

Colors indicate grouping based on positions associated with CAZ resistance: blue (D179Y), green (H274Y), yellow (L169P), and red (S171P). Panels show MIC values for CAZ, cefotaxime (CTX), cefoxitin (FOX), and imipenem (IMI), as labeled in the upper-right corner. Note that divergence in resistance profiles peaks around rounds 1–2, similarly to other traits (Fig. 3), underscoring how rapidly populations diverge after fixation of the first mutation.

Source data

Extended Data Fig. 2 Pairwise epistasis across the four-mutation landscape.

(a) Diagram of all mutational trajectories from the ancestral KPC-2 (bottom node). Conventions follow those in Fig. 2a, except that genotypes are numbered 1–16 (rather than labelled by the first letters of mutations) to facilitate the identification of genotypes shown in panel C. Genotype positions match those shown in Fig. 2a. (b) Distribution of epistasis values, calculated as the deviation of each double-mutant fitness from the additive expectation. (c) All possible pairwise interactions. At the top of each panel it is indicated which four genotypes are being considered. For example, the top-left panel compares the single effects of L169P and V240A on the ancestor (genotypes 1, 2 and 3) with their combined effect (genotype 6).

Source data

Extended Data Fig. 3 Biochemical characterization of selected enzymes.

(a) Progress curves of CAZ hydrolysis from a spectrophotometric assay. All reactions were performed with 500 nM enzyme and 50 μM ceftazidime. Hydrolysis of ceftazidime results in a decrease in absorbance at 260 nm. Curves correspond to the following variants: wild-type (black), D179P-L260M (blue), L169P-P94L (yellow), S171P-V240A-P94L-M49I (orange), H274Y (very light green), H274Y-V240A (light green), H274Y-V240A-V103L (green), and H274Y-V240A-V80E (dark green). (b) Steady-state kinetic parameters for CAZ hydrolysis for ancestral KPC-2 and the same variants as in A. Standard errors are provided in parentheses (n = 3).

Source data

Extended Data Fig. 4 Western blot of KPC-2 and its variants in periplasmic extracts of E. coli TOP10.

(ad) Periplasmic abundance of representative lineages from groups H274 (a, green), L169 (b, yellow), D179 (c, blue), and S171 (d, red) after 1 and 5 h of growth. (e) Immunoblot of selected KPC variants in the periplasm of E. coli TOP10 after 10 h of incubation. Isolates from each lineage are identified by the top label and color-coded as in previous panels. The bottom label indicates the evolutionary round of each isolate. Note that for groups D1 & D2 and S1 & S2, the earliest isolate shown (R2 and R1, respectively) is ancestral to both descendant lineages. Repeated round labels (R3 and R4, respectively) represent isolates sampled after lineage splitting and are arranged in natural alphanumeric order (for example, round 3 D1, round 3 D2).

Extended Data Fig. 5 Periplasmic stability of selected variants.

Bar plots display the log intensity ratio of initial (1 h) and final (5 h) bands for each variant, quantified from the Western blots in Extended Data Fig. 4. Panels and panel labels follow the same arrangement as in Extended Data Fig. 4. For convenience, lineage labels are included in the upper left of each panel. Colors correspond to those in Extended Data Fig. 2. Error bar represents the control’s 95% confidence interval across gels (mean ± 2 SEM; n = 8, Extended Data Fig. 4a–d).

Source data

Extended Data Fig. 6 Marked trade-offs between catalytic efficiency and periplasmic stability.

(a) Catalytic efficiency shows a weak, positive, nonsignificant correlation with MIC increases (Pearson’s r = 0.37, P = 0.47). (b) Periplasmic stability exhibits a strong negative correlation with MIC increases (Pearson’s r = –0.93, P = 0.007). (c) Combining catalytic efficiency and periplasmic stability (as in ref. 83) still strongly negatively correlates with MIC increases (Pearson’s r = –0.91, P = 0.0109). Although higher stability should intuitively increase MIC by providing greater enzyme availability, this expectation only holds true in the absence of the activity-stability trade-offs observed here. Note these factors do not offset each other effectively because losses in stability are orders of magnitude greater than gains in catalytic efficiency.

Source data

Extended Data Fig. 7 Growth rates of consecutive mutants within plateaus.

(a) Optical density changes over 12 h of growth. The black line represents the strain with wild-type KPC-2, gray lines represent earlier plateau strains, and colored lines represent subsequent strains. (b) Boxplot summarizing maximum growth rates from the growth curves above. X-axis labels, excluding the control strain, consist of a bottom label indicating the evolutionary line (as in Table S2) and a top label indicating which round the isolate was taken from (round 2: R2; round 3: R3; round 4: R4). Following R’s default convention, boxes span the first (Q1) to third (Q3) quartiles, central lines mark the median, and whiskers reach the most extreme points within 1.5 times the interquartile range.

Source data

Extended Data Fig. 8 Growth rates along evolutionary trajectories in the absence of antibiotic.

(a) Optical density changes over 12 h of growth. The black line represents the strain with wild-type KPC-2, thick colored lines represent the first round strains, and the thiner colored lines represent plateau strains. (b) Boxplot summarizing maximum growth rates from the growth curves above. X-axis labels, excluding the control strain, indicate the evolutionary line (as in Table S2) and the round from which each isolate was taken (that is, rounds 1–4, labeled R1–R4). Following R’s default convention, boxes span the first (Q1) to third (Q3) quartiles, central lines mark the median, and whiskers reach the most extreme points within 1.5 times the interquartile range. (c) Growth rates in the absence of antibiotic show a moderate negative correlation with those measured in the presence of subinhibitory concentrations of CAZ, albeit non-significant (R = –0.65, P = 0.11). Solid line indicates the ideal one-to-one correspondence.

Source data

Supplementary information

Supplementary Information

Supplementary Tables 1 and 2 and Figs. 1–5.

Reporting Summary

Peer Review File

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dabos, L., Nedjari, I. & Couce, A. Cryptic phenotypic variation emerges rapidly during the adaptive evolution of a carbapenemase. Nat Ecol Evol (2025). https://doi.org/10.1038/s41559-025-02804-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41559-025-02804-6

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology