Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of mitochondrial pyruvate carrier and its inhibition mechanism

Abstract

The mitochondrial pyruvate carrier (MPC) governs the entry of pyruvate—a central metabolite that bridges cytosolic glycolysis with mitochondrial oxidative phosphorylation—into the mitochondrial matrix1,2,3,4,5. It thus serves as a pivotal metabolic gatekeeper and has fundamental roles in cellular metabolism. Moreover, MPC is a key target for drugs aimed at managing diabetes, non-alcoholic steatohepatitis and neurodegenerative diseases4,5,6. However, despite MPC’s critical roles in both physiology and medicine, the molecular mechanisms underlying its transport function and how it is inhibited by drugs have remained largely unclear. Here our structural findings on human MPC define the architecture of this vital transporter, delineate its substrate-binding site and translocation pathway, and reveal its major conformational states. Furthermore, we explain the binding and inhibition mechanisms of MPC inhibitors. Our findings provide the molecular basis for understanding MPC’s function and pave the way for the development of more-effective therapeutic reagents that target MPC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overall structure of the human MPC1 and MPC2.
Fig. 2: MPC in complex with UK5099 or AKOS.
Fig. 3: Comparison of inhibitor-bound structures and the roles of the binding pocket residues.
Fig. 4: Inhibition of MPC by GW604714X.
Fig. 5: Pyruvate-bound structure and substrate-binding site.
Fig. 6: Conformational states and inhibition mechanism.

Similar content being viewed by others

Data availability

The MPC maps have been deposited in the Electron Microscopy Data Bank under EMD-48441, EMD-48442, EMD-48443, EMD-48444 and EMD-48445. The corresponding models have been deposited in the PDB under 9MNW, 9MNX, 9MNY, 9MNZ and 9MO0.

References

  1. Halestrap, A. P. & Denton, R. M. Specific inhibition of pyruvate transport in rat liver mitochondria and human erythrocytes by α-cyano-4-hydroxycinnamate. Biochem. J. 138, 313–316 (1974).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Bricker, D. K. et al. A mitochondrial pyruvate carrier required for pyruvate uptake in yeast, Drosophila, and humans. Science 337, 96–100 (2012).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  3. Herzig, S. et al. Identification and functional expression of the mitochondrial pyruvate carrier. Science 337, 93–96 (2012).

    Article  ADS  PubMed  CAS  Google Scholar 

  4. McCommis, K. S. & Finck, B. N. Mitochondrial pyruvate transport: a historical perspective and future research directions. Biochem. J. 466, 443–454 (2015).

    Article  PubMed  CAS  Google Scholar 

  5. Yiew, N. K. H. & Finck, B. N. The mitochondrial pyruvate carrier at the crossroads of intermediary metabolism. Am. J. Physiol. Endocrinol. Metab. 323, E33–E52 (2022).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  6. Zangari, J., Petrelli, F., Maillot, B. & Martinou, J. C. The multifaceted pyruvate metabolism: role of the mitochondrial pyruvate carrier. Biomolecules 10, 1068 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Martinez-Reyes, I. & Chandel, N. S. Mitochondrial TCA cycle metabolites control physiology and disease. Nat. Commun. 11, 102 (2020).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  8. Tavoulari, S., Sichrovsky, M. & Kunji, E. R. S. Fifty years of the mitochondrial pyruvate carrier: New insights into its structure, function, and inhibition. Acta Physiol. 238, e14016 (2023).

    Article  CAS  Google Scholar 

  9. Papa, S., Francavilla, A., Paradies, G. & Meduri, B. The transport of pyruvate in rat liver mitochondria. FEBS Lett. 12, 285–288 (1971).

    Article  PubMed  CAS  Google Scholar 

  10. Tavoulari, S. et al. The yeast mitochondrial pyruvate carrier is a hetero-dimer in its functional state. EMBO J. 38, e100785 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Tavoulari, S. et al. Key features of inhibitor binding to the human mitochondrial pyruvate carrier hetero-dimer. Mol. Metab. 60, 101469 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Gyimesi, G. & Hediger, M. A. Sequence features of mitochondrial transporter protein families. Biomolecules 10, 1611 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Nagampalli, R. S. K. et al. Human mitochondrial pyruvate carrier 2 as an autonomous membrane transporter. Sci. Rep. 8, 3510 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  14. Bender, T., Pena, G. & Martinou, J. C. Regulation of mitochondrial pyruvate uptake by alternative pyruvate carrier complexes. EMBO J. 34, 911–924 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Vanderperre, B. et al. MPC1-like is a placental mammal-specific mitochondrial pyruvate carrier subunit expressed in postmeiotic male germ cells. J. Biol. Chem. 291, 16448–16461 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Hegazy, L. et al. Identification of novel mitochondrial pyruvate carrier inhibitors by homology modeling and pharmacophore-based virtual screening. Biomedicines 10, 365 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Xu, L., Phelix, C. F. & Chen, L. Y. Structural insights into the human mitochondrial pyruvate carrier complexes. J. Chem. Inf. Model. 61, 5614–5625 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Schell, J. C. et al. A role for the mitochondrial pyruvate carrier as a repressor of the Warburg effect and colon cancer cell growth. Mol. Cell 56, 400–413 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. McCommis, K. S. et al. Nutritional modulation of heart failure in mitochondrial pyruvate carrier-deficient mice. Nat. Metab. 2, 1232–1247 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Fernandez-Caggiano, M. et al. Mitochondrial pyruvate carrier abundance mediates pathological cardiac hypertrophy. Nat. Metab. 2, 1223–1231 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Halestrap, A. P. The mitochondrial pyruvate carrier. Kinetics and specificity for substrates and inhibitors. Biochem. J. 148, 85–96 (1975).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Vadvalkar, S. S. et al. Decreased mitochondrial pyruvate transport activity in the diabetic heart: role of mitochondrial pyruvate carrier 2 (MPC2) acetylation. J. Biol. Chem. 292, 4423–4433 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Kamm, D. R. et al. Novel insulin sensitizer MSDC-0602K improves insulinemia and fatty liver disease in mice, alone and in combination with liraglutide. J. Biol. Chem. 296, 100807 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. McCommis, K. S. et al. Targeting the mitochondrial pyruvate carrier attenuates fibrosis in a mouse model of nonalcoholic steatohepatitis. Hepatology 65, 1543–1556 (2017).

    Article  PubMed  CAS  Google Scholar 

  25. Harrison, S. A. et al. Insulin sensitizer MSDC-0602K in non-alcoholic steatohepatitis: a randomized, double-blind, placebo-controlled phase IIb study. J. Hepatol. 72, 613–626 (2020).

    Article  PubMed  CAS  Google Scholar 

  26. Ghosh, A. et al. Mitochondrial pyruvate carrier regulates autophagy, inflammation, and neurodegeneration in experimental models of Parkinson’s disease. Sci. Transl. Med. 8, 368ra174 (2016).

    Article  PubMed  Google Scholar 

  27. Quansah, E. et al. Targeting energy metabolism via the mitochondrial pyruvate carrier as a novel approach to attenuate neurodegeneration. Mol. Neurodegener. 13, 28 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Shah, R. C. et al. An evaluation of MSDC-0160, a prototype mTOT modulating insulin sensitizer, in patients with mild Alzheimer’s disease. Curr. Alzheimer Res. 11, 564–573 (2014).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  29. Olson, K. A., Schell, J. C. & Rutter, J. Pyruvate and metabolic flexibility: illuminating a path toward selective cancer therapies. Trends Biochem. Sci. 41, 219–230 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Liu, X. et al. Development of novel mitochondrial pyruvate carrier inhibitors to treat hair loss. J. Med. Chem. 64, 2046–2063 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Divakaruni, A. S. et al. Thiazolidinediones are acute, specific inhibitors of the mitochondrial pyruvate carrier. Proc. Natl Acad. Sci. USA 110, 5422–5427 (2013).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  32. Colca, J. R. et al. Identification of a mitochondrial target of thiazolidinedione insulin sensitizers (mTOT)–relationship to newly identified mitochondrial pyruvate carrier proteins. PLoS ONE 8, e61551 (2013).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  33. Soccio, R. E., Chen, E. R. & Lazar, M. A. Thiazolidinediones and the promise of insulin sensitization in type 2 diabetes. Cell Metab. 20, 573–591 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Kane, S. Pioglitazone drug usage statistics, United States, 2013–2022. ClinCalc.com https://clincalc.com/DrugStats/Drugs/Pioglitazone (2024).

  35. Colca, J. R. et al. Clinical proof-of-concept study with MSDC-0160, a prototype mTOT-modulating insulin sensitizer. Clin. Pharmacol. Ther. 93, 352–359 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. McCommis, K. S. et al. Loss of mitochondrial pyruvate carrier 2 in the liver leads to defects in gluconeogenesis and compensation via pyruvate-alanine cycling. Cell Metab. 22, 682–694 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Gray, L. R. et al. Hepatic mitochondrial pyruvate carrier 1 is required for efficient regulation of gluconeogenesis and whole-body glucose homeostasis. Cell Metab. 22, 669–681 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Hildyard, J. C., Ammala, C., Dukes, I. D., Thomson, S. A. & Halestrap, A. P. Identification and characterisation of a new class of highly specific and potent inhibitors of the mitochondrial pyruvate carrier. Biochim. Biophys. Acta 1707, 221–230 (2005).

    Article  PubMed  CAS  Google Scholar 

  39. Wu, X. & Rapoport, T. A. Cryo-EM structure determination of small proteins by nanobody-binding scaffolds (Legobodies). Proc. Natl Acad. Sci. USA 118, e2115001118 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Nass, K. J. et al. The role of the N-terminal amphipathic helix in bacterial YidC: Insights from functional studies, the crystal structure and molecular dynamics simulations. Biochim. Biophys. Acta Biomembr. 1864, 183825 (2022).

    Article  PubMed  CAS  Google Scholar 

  41. Miyake, T., Hizukuri, Y. & Akiyama, Y. Involvement of a membrane-bound amphiphilic helix in substrate discrimination and binding by an Escherichia coli S2P peptidase RseP. Front. Microbiol. 11, 607381 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Nepal, B., Leveritt, J. 3rd & Lazaridis, T. Membrane curvature sensing by amphipathic helices: insights from implicit membrane modeling. Biophys. J. 114, 2128–2141 (2018).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  43. Halestrap, A. P. Pyruvate and ketone-body transport across the mitochondrial membrane. Exchange properties, pH-dependence and mechanism of the carrier. Biochem. J. 172, 377–387 (1978).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Yamashita, Y., Vinogradova, E. V., Zhang, X., Suciu, R. M. & Cravatt, B. F. A chemical proteomic probe for the mitochondrial pyruvate carrier complex. Angew. Chem. Int. Ed. Engl. 59, 3896–3899 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Wang, N. et al. Molecular basis for inhibiting human glucose transporters by exofacial inhibitors. Nat. Commun. 13, 2632 (2022).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  46. Kumar, H. et al. Structure of sugar-bound LacY. Proc. Natl Acad. Sci. USA 111, 1784–1788 (2014).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  47. Xu, Y. et al. Structures of bacterial homologues of SWEET transporters in two distinct conformations. Nature 515, 448–452 (2014).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  48. Lee, Y., Nishizawa, T., Yamashita, K., Ishitani, R. & Nureki, O. Structural basis for the facilitative diffusion mechanism by SemiSWEET transporter. Nat. Commun. 6, 6112 (2015).

    Article  ADS  PubMed  Google Scholar 

  49. Paradies, G. & Papa, S. On the kinetics and substrate specificity of the pyruvate translocator in rat liver mitochondria. Biochim. Biophys. Acta 462, 333–346 (1977).

    Article  PubMed  CAS  Google Scholar 

  50. Halestrap, A. P., Brand, M. D. & Denton, R. M. Inhibition of mitochondrial pyruvate transport by phenylpyruvate and α-ketoisocaproate. Biochim. Biophys. Acta 367, 102–108 (1974).

    Article  PubMed  CAS  Google Scholar 

  51. Coleman, J. A., Green, E. M. & Gouaux, E. X-ray structures and mechanism of the human serotonin transporter. Nature 532, 334–339 (2016).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  52. Niu, Y. et al. Structural basis of inhibition of the human SGLT2-MAP17 glucose transporter. Nature 601, 280–284 (2022).

    Article  ADS  PubMed  CAS  Google Scholar 

  53. Fan, M., Zhang, J., Lee, C. L., Zhang, J. & Feng, L. Structure and thiazide inhibition mechanism of the human Na–Cl cotransporter. Nature 614, 788–793 (2023).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  54. Goehring, A. et al. Screening and large-scale expression of membrane proteins in mammalian cells for structural studies. Nat. Protoc. 9, 2574–2585 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Pardon, E. et al. A general protocol for the generation of nanobodies for structural biology. Nat. Protoc. 9, 674–693 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. McMahon, C. et al. Yeast surface display platform for rapid discovery of conformationally selective nanobodies. Nat. Struct. Mol. Biol. 25, 289–296 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Li, Y. & Sousa, R. Expression and purification of E. coli BirA biotin ligase for in vitro biotinylation. Protein Expr. Purif. 82, 162–167 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Kowarz, E., Loscher, D. & Marschalek, R. Optimized Sleeping Beauty transposons rapidly generate stable transgenic cell lines. Biotechnol. J. 10, 647–653 (2015).

    Article  PubMed  CAS  Google Scholar 

  59. Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    Article  PubMed  CAS  Google Scholar 

  60. Bepler, T. et al. Positive-unlabeled convolutional neural networks for particle picking in cryo-electron micrographs. Nat. Methods 16, 1153–1160 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Wang, N. et al. Structural basis of human monocarboxylate transporter 1 inhibition by anti-cancer drug candidates. Cell 184, 370–383 e313 (2021).

    Article  PubMed  CAS  Google Scholar 

  62. Sanchez-Garcia, R. et al. DeepEMhancer: a deep learning solution for cryo-EM volume post-processing. Commun. Biol. 4, 874 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  64. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  ADS  PubMed  Google Scholar 

  65. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  66. Davis, I. W. et al. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 35, W375–W383 (2007).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  67. The PyMOL Molecular Graphics System, Version 1.8 (Schrodinger, LLC, 2015).

  68. Pettersen, E. F. et al. UCSF Chimera–a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  PubMed  CAS  Google Scholar 

  69. Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).

    Article  PubMed  CAS  Google Scholar 

  70. Robert, X. & Gouet, P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 42, W320–W324 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Friesner, R. A. et al. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem. 47, 1739–1749 (2004).

    Article  PubMed  CAS  Google Scholar 

  72. Lu, C. et al. OPLS4: improving force field accuracy on challenging regimes of chemical space. J. Chem. Theory Comput. 17, 4291–4300 (2021).

    Article  PubMed  CAS  Google Scholar 

  73. Johnston, R. C. et al. Epik: pKa and protonation state prediction through machine learning. J. Chem. Theory Comput. 19, 2380–2388 (2023).

    Article  PubMed  CAS  Google Scholar 

  74. Olsson, M. H., Sondergaard, C. R., Rostkowski, M. & Jensen, J. H. PROPKA3: consistent treatment of internal and surface residues in empirical pKa predictions. J. Chem. Theory Comput. 7, 525–537 (2011).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Montabana and M. Zaoralová at Stanford cEMc for help with electron microscopy data collection. Some of this work was performed at the Stanford-SLAC Cryo-EM Center (S2C2), which is supported by the US National Institutes of Health (NIH) Common Fund Transformative High-Resolution Cryo-Electron Microscopy programme (U24 GM129541). We thank the following S2C2 personnel for their invaluable support and assistance: Y. Liu. We also thank J. Jiang for technical advice; T. Chew for helpful discussions; and W. Frommer, L. Cheung and J. Rutter for sharing advice and/or reagents for initial setup of the yeast assay. This research is made possible by support from Stanford University, NIH R01GM117108 and NIH R35GM153424 (L.F.). E.J.F. is in the Sarafan ChEM-H Chemistry/Biology Interface Training Program and supported by NIH 5T32GM139791.

Author information

Authors and Affiliations

Authors

Contributions

Z.H., J.Z. and Y.X. carried out biochemical, structural and functional experiments. E.J.F., C.-M.S. and R.O.D. contributed to modelling. Z.H. and L.F. wrote the manuscript with input from all authors. L.F. directed the project.

Corresponding author

Correspondence to Liang Feng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Andrew Halestrap and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Sequence alignment of MPC homologues.

a-b, Sequence alignment of MPC1 and MPC2 homologues. Secondary structural elements are indicated above the sequence alignment, while substrate and inhibitor binding residues are shown below the sequence alignment, represented by green and red circles, respectively.

Extended Data Fig. 2 Purification of MPC complex and structural comparison of MPC and SemiSWEET.

a, Size-exclusion chromatography profile of the heterodimer of MPC1 and MPC2 and SDS-PAGE analysis. The experiments were repeated independently six times with similar results. For gel source data, see Supplementary Fig. 1a. b, Size-exclusion chromatography profile of the complex of MPC-NbS1755-Legobody in detergent and SDS-PAGE analysis. The experiments were repeated independently six times with similar results. For gel source data, see Supplementary Fig. 1b. c, Cryo-EM density map of the complex of MPCUK5099-NbS1755-Legobody. MPC1, MPC2, NbS1755, Legobody, and nanodisc are colored in green, cyan, orang, gray, and purple, respectively. d, Structure comparison of hMPC and SemiSWEET.

Extended Data Fig. 3 Inhibitor and substrate binding and V74WMPC2 variant.

a, Chemical structures of select MPC inhibitors and their IC50 values. b-d, MPC’s binding pocket for UK5099, AKOS, and GW604714X. The slab view of MPC is shown (colored by electrostatic potential). e, Structural comparison of MPC in complex with pyruvate and UK5099. The pyruvate is colored in purple and UK5099 is colored in light pink. f-g, Docking of compound 2 and 12 (ref. 11) in MPC, compared to the experimental pose of AKOS. The AKOS is coloured in light orange, and the other inhibitors are coloured in gray. h, Effect of V74WMPC2 substitution on the yeast growth. The yeasts are grown on the synthetic defined medium that lacks leucine and valine (SD-L-V). WT, wild type; EV, empty vector. i-l, Known substrates (i, acetoacetate; j, beta-hydroxybutyrate; k, dichloroacetate; l, 2-chloroacetate) modelled in the substrate binding-pocket of MPC. Substrate molecules were placed in the pocket by aligning with the pyruvate. Pyruvate and other substrates are shown as sticks in purple and yellow, respectively. m, Structural comparison of MPC that was bound with UK5099 and GW604714X, respectively. The MPC in complex with UK5099 was shown in grey. For the MPC complexed with GW604714X, its two subunits, MPC1 and MPC2, are colored in green and cyan, respectively.

Extended Data Fig. 4 Cryo-EM data processing of MPCAKOS-NbS1755-Legobody.

a, A flowchart of MPCAKOS-NbS1755-Legobody data processing. b, A representative cryo-EM image (from 16,520 micrographs with similar results). c, Typical 2D class averages. d, A cut-open view of the local resolution map. e, Angular particle distribution. f, Gold-standard Fourier shell correlation curves of the local-refined map. g, Cryo-EM density and structural model.

Extended Data Fig. 5 Cryo-EM data processing of MPCUK5099-NbS1755-Legobody.

a, A flowchart of MPCUK5099-NbS1755-Legobody in nanodiscs data processing. This includes a cut-open view of the local resolution map, angular particle distribution and gold-standard Fourier shell correlation curves of the local-refined map. b, A representative cryo-EM image (from 19,801 micrographs with similar results). c, Typical 2D class averages. d, A flowchart of MPCUK5099-NbS1755-Legobody in LMNG data processing. e, Cryo-EM density and structural model.

Extended Data Fig. 6 Cryo-EM data processing of MPCpyruvate-NbS1755-Legobody.

a, A flowchart of MPCpyruvate-NbS1755-Legobody data processing. b, A representative cryo-EM image (from 4,775 micrographs with similar results). c, Typical 2D class averages. d, A cut-open view of the local resolution map. e, Angular particle distribution. f, Gold-standard Fourier shell correlation curves of the local-refined map. g, Cryo-EM density and structural model.

Extended Data Fig. 7 Cryo-EM data processing of MPCGW604714X-NbS1755-Legobody.

a, A flowchart of MPCGW604714X-NbS1755-Legobody data processing. b, A representative cryo-EM image (from 7,457 micrographs with similar results). c, Typical 2D class averages. d, A cut-open view of the local resolution map. e, Angular particle distribution. f, Gold-standard Fourier shell correlation curves of the local-refined map. g, Map vs. model FSC. h, Cryo-EM density and structural model.

Extended Data Fig. 8 Sensitivity of hMPC C54AMPC2 to inhibitors and comparison of inhibitor binding pockets between human MPC1/2 and yeast MPC1/3.

a, The sensitivity of the yeast growth to inhibitor UK5099 for yeasts expressing human MPC WT and C54AMPC2 (mean ± SD; n = 3 independent experiments). b, The sensitivity of the yeast growth to inhibitor AKOS for yeasts expressing human WT and C54AMPC2 (mean ± SD; n = 3 independent experiments). c, The residues that differ in the UK5099 binding pocket of hMPC and yMPC. The predicted yMPC (MPC1/MPC3) structure, modeled based on hMPC structure, was superimposed onto the hMPC structure. The differing residues in the inhibitor-binding pocket are shown as sticks in green (hMPC1), cyan (hMPC2), and purple (yMPC). d, The sensitivity of the yeast growth to inhibitor UK5099 for yeasts expressing WT MPC and mutants MPC (mean ± SD; n = 3 independent experiments).

Extended Data Fig. 9 Sequence alignment of MPC and SemiSWEET homologues.

Sequence alignments of MPC from human, Bovine, Mouse, Chicken, African clawed frog (frog), Black rockcod (Rockcod), Caenorhabditis elegans (C. ele), Lacerta muralis (L. mur), Saccharomyces cerevisiae (Yeast) and SemiSWEET from Vibrio sp (V. sp.), Rickettsia bellii (R. bel.), Leptospira biflexa serovar Patoc (L. bsp.), Fusobacterium (Fus.), Flavobacterium johnsoniae (F. joh.), Escherichia coli (E. coli), Chlorobium phaeobacteroides (C. pha.), Parvimonas micra (P. mic.), Limosilactobacillus reuteri (L. reu). The highly conserved residues between MPC2 and SemiSWEET are indicated by blue circles. Each group of MPC1, MPC2, and SemiSWEET is separated by lines.

Extended Data Table 1 Cryo-EM data collection, refinement, and validation statistics

Supplementary information

Supplementary Fig. 1

Source images for SDS–PAGE gels in Extended Data Fig. 2a,b.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Z., Zhang, J., Xu, Y. et al. Structure of mitochondrial pyruvate carrier and its inhibition mechanism. Nature 641, 250–257 (2025). https://doi.org/10.1038/s41586-025-08667-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41586-025-08667-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing