Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Molecular subtypes of human skeletal muscle in cancer cachexia

Abstract

Cancer-associated muscle wasting is associated with poor clinical outcomes1, but its underlying biology is largely uncharted in humans2. Unbiased analysis of the RNAome (coding and non-coding RNAs) with unsupervised clustering using integrative non-negative matrix factorization3 provides a means of identifying distinct molecular subtypes and was applied here to muscle of patients with colorectal or pancreatic cancer. Rectus abdominis biopsies from 84 patients were profiled using high-throughput next-generation sequencing. Integrative non-negative matrix factorization with stringent quality metrics for clustering identified two highly coherent molecular subtypes within muscle of patients with cancer. Patients with subtype 1 (versus subtype 2) showed clinical manifestations of cachexia: high-grade weight loss, low muscle mass, atrophy of type IIA and type IIX muscle fibres, and reduced survival. On the basis of differential expression between the subtypes, we identified biological processes that may contribute to cancer-associated loss of muscle mass and function, including altered posttranscriptional regulation and perturbation of neuronal systems; cytokine storm and cellular immune response; pathways related to extracellular matrix; and metabolic abnormalities spanning xenobiotic metabolism, haemostasis, signal transduction, embryonic and/or pluripotent stem cells, and amino acid metabolism. Differential expression between subtypes indicated the involvement of multiple intertwined higher-order gene regulatory networks, suggesting that network interactions of (hub) long non-coding RNAs, microRNAs and mRNAs could represent targets for future research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Research design and cachexia classification.
Fig. 2: Subtype identification, genome-wide RNAome profiles, association with clinical, radiological and histological parameters.
Fig. 3: Multilayered RNA cross-talk and hub lncRNAs.
Fig. 4: Top Differentially Expressed canonical pathways in subtype 1 versus subtype 2.
Fig. 5: Comparison of canonical pathways in rat model compared with human molecular subtype.

Similar content being viewed by others

Data availability

The data generated during this study are available in the Supplementary Information and have been deposited at GEO (https://www.ncbi.nlm.nih.gov/geo/), being accessible through GEO series accession codes GSE254877 (RNA-seq), GSE254878 (small RNA-seq) and GSE292052 (rat RNA-seq) embedded in GEO super series GSE292053.

References

  1. Xia, L. et al. Sarcopenia and adverse health-related outcomes: an umbrella review of meta-analyses of observational studies. Cancer Med 9, 7964–7978 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Anoveros-Barrera, A. et al. Clinical and biological characterization of skeletal muscle tissue biopsies of surgical cancer patients. J. Cachexia Sarcopenia Muscle 10, 1356–1377 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Chalise, P. & Fridley, B. L. Integrative clustering of multi-level ‘omic data based on non-negative matrix factorization algorithm. PLoS ONE 12, e0176278 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Roeland, E. J. et al. Weight loss versus muscle loss: re-evaluating inclusion criteria for future cancer cachexia interventional trials. Support. Care Cancer 25, 365–369 (2017).

    PubMed  Google Scholar 

  5. Martin, L. et al. Cancer cachexia in the age of obesity: skeletal muscle depletion is a powerful prognostic factor, independent of body mass index. J. Clin. Oncol. 31, 1539–1547 (2013).

    Article  PubMed  Google Scholar 

  6. Stretch, C. et al. Effects of sample size on differential gene expression, rank order and prediction accuracy of a gene signature. PLoS ONE 8, e65380 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Talbert, E. E. et al. Modeling human cancer-induced cachexia. Cell Rep. 28, 1612–1622.e1614 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Narasimhan, A. et al. Profiling of adipose and skeletal muscle in human pancreatic cancer cachexia reveals distinct gene profiles with convergent pathways. Cancers 13, 1975 (2021).

  9. Baracos, V. E., Martin, L., Korc, M., Guttridge, D. C. & Fearon, K. C. H. Cancer-associated cachexia. Nat. Rev. Dis. Primers 4, 17105 (2018).

    Article  PubMed  Google Scholar 

  10. Zhao, K. et al. Transcriptomic signature of cancer cachexia by integration of machine learning, literature mining and meta-analysis. Comput. Biol. Med. 172, 108233 (2024).

    Article  CAS  PubMed  Google Scholar 

  11. Brunet, J. P., Tamayo, P., Golub, T. R. & Mesirov, J. P. Metagenes and molecular pattern discovery using matrix factorization. Proc. Natl Acad. Sci. USA 101, 4164–4169 (2004).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Carmona-Saez, P., Pascual-Marqui, R. D., Tirado, F., Carazo, J. M. & Pascual-Montano, A. Biclustering of gene expression data by non-smooth non-negative matrix factorization. BMC Bioinformatics 7, 78 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Martin, L. et al. Diagnostic criteria for the classification of cancer-associated weight loss. J. Clin. Oncol. 33, 90–99 (2015).

    Article  PubMed  Google Scholar 

  14. Zhong, X. & Zimmers, T. A. Sex differences in cancer cachexia. Curr. Osteoporos. Rep. 18, 646–654 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Fearon, K. et al. Definition and classification of cancer cachexia: an international consensus. Lancet Oncol. 12, 489–495 (2011).

    Article  PubMed  Google Scholar 

  16. Folker, E. S. & Baylies, M. K. Nuclear positioning in muscle development and disease. Front. Physiol. 4, 363 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Tay, Y., Rinn, J. & Pandolfi, P. P. The multilayered complexity of ceRNA crosstalk and competition. Nature 505, 344–352 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Aouci, R. et al. The antidepressant action of fluoxetine involves the inhibition of Dlx5/6 in cortical GABAergic neurons through a TrkB-dependent pathway. Cells 13, 1262 (2024).

  19. Lu, Y. et al. The NF-κB-responsive long noncoding RNA FIRRE regulates posttranscriptional regulation of inflammatory gene expression through interacting with hnRNPU. J. Immunol. 199, 3571–3582 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li, D. et al. MicroRNAs hsa-miR-495-3p and hsa-miR-486-5p suppress basal and rifampicin-induced expression of human sulfotransferase 2A1 (SULT2A1) by facilitating mRNA degradation. Biochem. Pharmacol. 169, 113617 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lecker, S. H. et al. Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression. FASEB J. 18, 39–51 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Peris-Moreno, D., Cussonneau, L., Combaret, L., Polge, C. & Taillandier, D. Ubiquitin ligases at the heart of skeletal muscle atrophy control. Molecules 26, 407 (2021).

  23. Almasud, A. A. et al. Fish oil mitigates myosteatosis and improves chemotherapy efficacy in a preclinical model of colon cancer. PLoS ONE 12, e0183576 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Neyroud, D. et al. Local inflammation precedes diaphragm wasting and fibrotic remodelling in a mouse model of pancreatic cancer. J. Cachexia Sarcopenia Muscle 16, e13668 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Spadafora, V. et al. Optimization of a mouse model of pancreatic cancer to simulate the human phenotypes of metastasis and cachexia. BMC Cancer 24, 414 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chen, R., Lei, S., Jiang, T., She, Y. & Shi, H. Regulation of skeletal muscle atrophy in cachexia by microRNAs and long non-coding RNAs. Front. Cell Dev. Biol. 8, 577010 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Cesana, M. et al. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell 147, 358–369 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mukherjee, S., Banerjee, B., Karasik, D. & Frenkel-Morgenstern, M. mRNA-lncRNA co-expression network analysis reveals the role of lncRNAs in immune dysfunction during severe SARS-CoV-2 infection. Viruses 13, 402 (2021).

  29. Arman, K., Dalloul, Z. & Bozgeyik, E. Emerging role of microRNAs and long non-coding RNAs in COVID-19 with implications to therapeutics. Gene 861, 147232 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Boehm, I. et al. Neuromuscular junctions are stable in patients with cancer cachexia. J. Clin. Invest. 130, 1461–1465 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Huot, J. R., Pin, F. & Bonetto, A. Muscle weakness caused by cancer and chemotherapy is associated with loss of motor unit connectivity. Am. J. Cancer Res. 11, 2990–3001 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Sartori, R. et al. Perturbed BMP signaling and denervation promote muscle wasting in cancer cachexia. Sci. Transl. Med. 13, eaay9592 (2021).

  33. Webster, J. M., Kempen, L., Hardy, R. S. & Langen, R. C. J. Inflammation and skeletal muscle wasting during cachexia. Front. Physiol. 11, 597675 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Baazim, H., Antonio-Herrera, L. & Bergthaler, A. The interplay of immunology and cachexia in infection and cancer. Nat. Rev. Immunol. 22, 309–321 (2022).

    Article  CAS  PubMed  Google Scholar 

  35. Lang, C. H. Importance of the innate immune response in skeletal muscle to depsis-induced alterations in protein balance. Shock 59, 214–223 (2023).

    Article  CAS  PubMed  Google Scholar 

  36. Frost, R. A., Nystrom, G. J. & Lang, C. H. Multiple Toll-like receptor ligands induce an IL-6 transcriptional response in skeletal myocytes. Am. J. Physiol. Regul. Integr. Comp. Physiol. 290, R773–R784 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Olson, B., Diba, P., Korzun, T. & Marks, D. L. Neural mechanisms of cancer cachexia. Cancers 13, 3990 (2021).

  38. Burfeind, K. G. et al. Circulating myeloid cells invade the central nervous system to mediate cachexia during pancreatic cancer. eLife 9, e54095 (2020).

  39. Dzierlega, K. et al. Activin A-expressing polymorphonuclear myeloid-derived suppressor cells infiltrate skeletal and cardiac muscle and promote cancer cachexia. J. Immunol. 211, 497–507 (2023).

    Article  CAS  PubMed  Google Scholar 

  40. Wang, R. et al. A human skeletal muscle stem/myotube model reveals multiple signaling targets of cancer secretome in skeletal muscle. iScience 26, 106541 (2023).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  41. Arneson, P. C. & Doles, J. D. Impaired muscle regeneration in cancer-associated cachexia. Trends Cancer 5, 579–582 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Brzeszczynska, J. et al. Loss of oxidative defense and potential blockade of satellite cell maturation in the skeletal muscle of patients with cancer but not in the healthy elderly. Aging 8, 1690–1702 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Judge, S. M. et al. Skeletal muscle fibrosis in pancreatic cancer patients with respect to survival. JNCI Cancer Spectr. 2, pky043 (2018).

    Article  PubMed  Google Scholar 

  44. Washington, T. A. et al. Development of skeletal muscle fibrosis in a rodent model of cancer cachexia. Cell Biochem. Funct. 41, 478–489 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Berriel Diaz, M., Rohm, M. & Herzig, S. Cancer cachexia: multilevel metabolic dysfunction. Nat. Metab. 6, 2222–2245 (2024).

    Article  PubMed  Google Scholar 

  46. Levit, L. A. et al. Ethical framework for including research biopsies in oncology clinical trials: American Society of Clinical Oncology Research Statement. J. Clin. Oncol. 37, 2368–2377 (2019).

    Article  PubMed  Google Scholar 

  47. Gallagher, I. J. et al. Suppression of skeletal muscle turnover in cancer cachexia: evidence from the transcriptome in sequential human muscle biopsies. Clin. Cancer Res. 18, 2817–2827 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Nosacka, R. L. et al. Distinct cachexia profiles in response to human pancreatic tumours in mouse limb and respiratory muscle. J. Cachexia Sarcopenia Muscle 11, 820–837 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Terry, E. E. et al. Transcriptional profiling reveals extraordinary diversity among skeletal muscle tissues. eLife 7, e34613 (2018).

  50. Babic, A. et al. Adipose tissue and skeletal muscle wasting precede clinical diagnosis of pancreatic cancer. Nat. Commun. 14, 4317 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  51. Narasimhan, A. et al. Small RNAome profiling from human skeletal muscle: novel miRNAs and their targets associated with cancer cachexia. J. Cachexia Sarcopenia Muscle 8, 405–416 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Kays, J. K. et al. Three cachexia phenotypes and the impact of fat-only loss on survival in FOLFIRINOX therapy for pancreatic cancer. J. Cachexia Sarcopenia Muscle 9, 673–684 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Kubrak, C. et al. Quantifying the severity of sarcopenia in patients with cancer of the head and neck. Clin. Nutr. 43, 989–1000 (2024).

    Article  PubMed  Google Scholar 

  54. Derstine, B. A. et al. Skeletal muscle cutoff values for sarcopenia diagnosis using T10 to L5 measurements in a healthy US population. Sci. Rep. 8, 11369 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  55. Kozomara, A., Birgaoanu, M. & Griffiths-Jones, S. miRBase: from microRNA sequences to function. Nucleic Acids Res. 47, D155–D162 (2019).

    Article  CAS  PubMed  Google Scholar 

  56. Bouchard-Bourelle, P. et al. snoDB: an interactive database of human snoRNA sequences, abundance and interactions. Nucleic Acids Res. 48, D220–D225 (2020).

    Article  CAS  PubMed  Google Scholar 

  57. Piuco, R. & Galante, P. A. F. piRNAdb: a piwi-interacting RNA database. Preprint at bioRxiv https://doi.org/10.1101/2021.09.21.461238 (2021).

  58. Chan, P. P. & Lowe, T. M. GtRNAdb 2.0: an expanded database of transfer RNA genes identified in complete and draft genomes. Nucleic Acids Res. 44, D184–D189 (2016).

    Article  CAS  PubMed  Google Scholar 

  59. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15, 550 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Xue, H. et al. Single and combined supplementation of glutamine and n-3 polyunsaturated fatty acids on host tolerance and tumour response to 7-ethyl-10-[4-(1-piperidino)-1-piperidino]carbonyloxy-camptothecin (CPT-11)/5-fluorouracil chemotherapy in rats bearing Ward colon tumour. Br. J. Nutr. 102, 434–442 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. Enright, A. J. et al. MicroRNA targets in Drosophila. Genome Biol. 5, R1 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Karagkouni, D. et al. DIANA-TarBase v8: a decade-long collection of experimentally supported miRNA-gene interactions. Nucleic Acids Res. 46, D239–D245 (2018).

    Article  CAS  PubMed  Google Scholar 

  63. Karagkouni, D. et al. DIANA-LncBase v3: indexing experimentally supported miRNA targets on non-coding transcripts. Nucleic Acids Res. 48, D101–D110 (2020).

    CAS  PubMed  Google Scholar 

  64. Huang, H. Y. et al. miRTarBase 2020: updates to the experimentally validated microRNA–target interaction database. Nucleic Acids Res. 48, D148–D154 (2020).

    ADS  CAS  PubMed  Google Scholar 

  65. Li, R. et al. GDCRNATools: an R/Bioconductor package for integrative analysis of lncRNA, miRNA and mRNA data in GDC. Bioinformatics 34, 2515–2517 (2018).

    Article  PubMed  Google Scholar 

  66. Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kramer, A., Green, J., Pollard, J. Jr & Tugendreich, S. Causal analysis approaches in Ingenuity Pathway Analysis. Bioinformatics 30, 523–530 (2014).

    Article  PubMed  Google Scholar 

  68. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M. & Ishiguro-Watanabe, M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 51, D587–D592 (2023).

    Article  CAS  PubMed  Google Scholar 

  70. Kanehisa, M. Toward understanding the origin and evolution of cellular organisms. Protein Sci. 28, 1947–1951 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M. & Tanabe, M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 44, D457–D462 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Canadian Institute of Health Research (CIHR) for providing operating research grants.

Author information

Authors and Affiliations

Authors

Contributions

B.J.B., V.E.B. and S.D. performed conceptualization and overall data analysis. Next-generation sequencing, molecular and bioinformatical analysis, and unsupervised clustering techniques and interpretations were performed by B.J.B. and S.D. The collection, assembly and statistical analysis of clinical, demographic, histological and radiological data were performed by B.J.B. and V.E.B. The human muscle biopsy histology was carried out by A.Q.B. The accrual of human skeletal muscle biopsies was carried out by O.B. The preclinical model was developed by V.M. S.G. provided statistical advice. B.J.B., V.E.B. and S.D. wrote the manuscript. All authors approved the final version.

Corresponding authors

Correspondence to Vickie E. Baracos or Sambasivarao Damaraju.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Russell Hepple, Serkan Kir and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Correlation between muscle change over time in lumbar, thoracic and thigh musculature.

Total muscle cross-sectional area was determined in the 3rd lumbar vertebra, at the 4th thoracic vertebra and thigh 11.25 mm below the lesser trochanter of the femur. Muscle change over time is expressed as % for N = 39 patients. Statistic Pearson r. Inset: cross correlations between L3, T4 and leg muscle change over time. These regions include different muscles: abdomen at L3 (rectus abdominis, lateral and oblique abdominis muscles, quadratus lumborum, psoas, paraspinal (multifidus, erector spinae), thigh (rectus femoris, sartorius, vastus intermedius, vastus lateralis, adductor, gracilis, gluteus maximus, biceps femoris and semitendinosus) and chest at the 4th thoracic vertebra (pectoralis, external intercostal, serratus anterior, teres major, subscapularis, infraspinatus, rhomboid major, erector spinae, trapezius). The high degree of intercorrelation of muscle change over time these regions suggests that cancer-associated muscle atrophy is systemic.

Extended Data Fig. 2 Pathway map of cytokine-cytokine interactions.

The pathway map (generated using KEGG database) depicts the ligand-receptor interactions between chemokines, cytokines, TGF and TNF gene family. The genes highlighted in red were more highly expressed in subtype 1.

Extended Data Fig. 3 Pathway map of ECM receptor interactions.

The pathway map (generated using KEGG database) depicts the ligand-receptor interactions between extracellular matrix (ECM) gene family. The genes highlighted in red were more highly expressed in subtype 1.

Extended Data Fig. 4 GSEA results of protein/amino acid metabolism.

Amino acid catabolic processes enriched in subtype 1 are shown in in panel a and c for men and women, respectively. Heatmap representation (panel b and d) of genes comprising core enrichment are represented with the expression intensity, red representing genes with high expression and blue representing low expression.

Extended Data Fig. 5 Bubble plot of pathway identities and p-values extracted from suppl. Table 2 of Neyroud et al. 24.

Functional annotation terms were filtered at a P-value cut-off of <0.0001 from GSE271521. Mouse muscle mRNAs were subjected to DAVID bioinformatics analysis (DAVID Functional Annotation Bioinformatics Microarray Analysis) to identify enriched biological processes/pathways. Biological process categories (left side column) represent themes of high differential expression between subtype 1 (versus subtype 2) in male patients in our clinical study sample; this specific comparison was chosen because the mice were of male sex. Size of dots represents p-value significance as depicted in the bubble plot. The color of the bubble represents different pathway categories mentioned on the left side of the figure. Results are presented based on the temporal analysis from Day 8 through to the study endpoint (Day 15–18).

Extended Data Table 1 Clinical and radiological features of subtypes
Extended Data Table 2 Histological parameters associated with radiologically determined SMI categories

Supplementary information

Supplementary Tables

Supplementary Tables 1–6.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhatt, B.J., Ghosh, S., Mazurak, V. et al. Molecular subtypes of human skeletal muscle in cancer cachexia. Nature (2025). https://doi.org/10.1038/s41586-025-09502-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41586-025-09502-0

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer