Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Noradrenergic activation of the basolateral amygdala facilitates memory specificity for similar events experienced close in time

Abstract

Noradrenergic activation of the basolateral amygdala (BLA) promotes strong and lasting memories of emotionally arousing experiences. However, in our lives, we often encounter similar events that may be confused and result in emotional strengthening of incorrect associations. Here we provide evidence, in rats, that noradrenergic activation of the BLA promotes the formation of discrete memories of similar events that were experienced close in time, via a miR-134-regulated consolidation process within the dentate gyrus of the hippocampus. Targeted downregulation of miR-134 in the hippocampus was sufficient to induce memory specificity, without affecting the strength of the memory. Notably, noradrenergic activation of the BLA did not recruit this hippocampal miR-134-mediated mechanism in enhancing memory of a single event. These findings indicate that the BLA engages a qualitatively different neural mechanism on an ‘as-needed’ basis to facilitate the separation of similar memory representations, enabling the selective strengthening of correct associations into long-term memory.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Posttraining NE in the BLA induces memory specificity.
Fig. 2: Posttraining NE in the BLA downregulates miR-134 within the dDG.
Fig. 3: Hippocampal miR-134 selectively affects memory specificity.
Fig. 4: NE in the BLA naturally engages this miR-134 mechanism.
Fig. 5: NE in the BLA does not affect miR-134 after a single event.

Similar content being viewed by others

Data availability

Data are available via Zenodo at https://doi.org/10.5281/zenodo.15496898 (ref. 71) or in this paper and Supplementary Information.

References

  1. Roozendaal, B. & McGaugh, J. L. Memory modulation. Behav. Neurosci. 125, 797–824 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. McGaugh, J. L. Memory—a century of consolidation. Science 287, 248–251 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. McIntyre, C. K., Hatfield, T. & McGaugh, J. L. Amygdala norepinephrine levels after training predict inhibitory avoidance retention performance in rats. Eur. J. Neurosci. 16, 1223–1226 (2002).

    Article  PubMed  Google Scholar 

  4. Phelps, E. A. & LeDoux, J. E. Contributions of the amygdala to emotional processing: from animal models to human behavior. Neuron 48, 175–187 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Cai, D. J. et al. A shared neural ensemble links distinct contextual memories encoded close in time. Nature 534, 115–118 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Liu, Y., Xu, M. & Li, W. G. Segregating memories: targeting microenvironment of neuronal ensembles. Sig. Transduct. Target Ther. 7, 363 (2022).

    Article  Google Scholar 

  7. Silva, A. J., Zhou, Y., Rogerson, T., Shobe, J. & Balaji, J. Molecular and cellular approaches to memory allocation in neural circuits. Science 326, 391–395 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rogerson, T. et al. Synaptic tagging during memory allocation. Nat. Rev. Neurosci. 14, 157–169 (2014).

    Article  Google Scholar 

  9. Roozendaal, B. & Mirone, G. Opposite effects of noradrenergic and glucocorticoid activation on accuracy of an episodic-like memory. Psychoneuroendocrinology 114, 104588 (2020).

    Article  CAS  PubMed  Google Scholar 

  10. Bahtiyar, S., Gulmez Karaca, K., Henckens, M. J. A. G. & Roozendaal, B. Norepinephrine and glucocorticoid effects on the brain mechanisms underlying memory accuracy and generalization. Mol. Cell. Neurosci. 108, 103537 (2020).

    Article  CAS  PubMed  Google Scholar 

  11. Dunsmoor, J. E. & Paz, R. Fear generalization and anxiety: behavioral and neural mechanisms. Biol. Psychiatry 78, 336–343 (2015).

    Article  PubMed  Google Scholar 

  12. Atucha, E. & Roozendaal, B. The inhibitory avoidance discrimination task to investigate accuracy of memory. Front. Behav. Neurosci. 9, 60 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Atucha, E. et al. Noradrenergic activation of the basolateral amygdala maintains hippocampus-dependent accuracy of remote memory. Proc. Natl Acad. Sci. USA 114, 9176–9181 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. LaLumiere, R. T., Buen, T.-V. & McGaugh, J. L. Post-training intra-basolateral amygdala infusions of norepinephrine enhance consolidation of memory for contextual fear conditioning. J. Neurosci. 23, 6754–6758 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Roozendaal, B., Castello, N. A., Vedana, G., Barsegyan, A. & McGaugh, J. L. Noradrenergic activation of the basolateral amygdala modulates consolidation of object recognition memory. Neurobiol. Learn. Mem. 90, 576–579 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Clewett, D. & Murty, V. P. Echoes of emotions past: how neuromodulators determine what we recollect. eNeuro 6, ENEURO.0108-18.2019 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Clewett, D., Gasser, C. & Davachi, L. Pupil-linked arousal signals track the temporal organization of events in memory. Nat. Commun. 11, 4007 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dunsmoor, J. E. et al. Event segmentation protects emotional memories from competing experiences encoded close in time. Nat. Hum. Behav. 2, 291–299 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Marr, D. Simple memory: a theory for archicortex. Philos. Trans. R. Soc. Lond. B Biol. Sci. 262, 23–81 (1971).

    Article  CAS  PubMed  Google Scholar 

  20. Leutgeb, J. K., Leutgeb, S., Moser, M. B. & Moser, E. I. Pattern separation in the dentate gyrus and CA3 of the hippocampus. Science 315, 961–966 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Yassa, M. A. & Stark, C. E. Pattern separation in the hippocampus. Trends Neurosci. 34, 515–525 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kandel, E. R. The molecular biology of memory storage: a dialogue between genes and synapses. Science 294, 1030–1038 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. He, L. & Hannon, G. J. MicroRNAs: small RNAs with a big role in gene regulation. Nat. Rev. Genet. 5, 522–531 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Schratt, G. microRNAs at the synapse. Nat. Rev. Neurosci. 10, 842–849 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Schratt, G. M. et al. A brain-specific microRNA regulates dendritic spine development. Nature 439, 283–289 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Bicker, S., Lackinger, M., Weiß, K. & Schratt, G. MicroRNA-132, -134, and -138: a microRNA troika rules in neuronal dendrites. Cell. Mol. Life Sci. 71, 3987–4005 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gao, J. et al. A novel pathway regulates memory and plasticity via SIRT1 and miR-134. Nature 466, 1105–1109 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Im, H. I. & Kenny, P. J. MicroRNAs in neuronal function and dysfunction. Trends Neurosci. 35, 325–334 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Silva, A. J., Kogan, J. H., Frankland, P. W. & Kida, S. CREB and memory. Annu. Rev. Neurosci. 21, 127–148 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Mizuno, M., Yamada, K., Olariu, A., Nawa, H. & Nabeshima, T. Involvement of brain-derived neurotrophic factor in spatial memory formation and maintenance in a radial arm maze test in rats. J. Neurosci. 20, 7116–7121 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bekinschtein, P. et al. BDNF in the dentate gyrus is required for consolidation of “pattern-separated” memories. Cell Rep. 5, 759–768 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bekinschtein, P. et al. Brain-derived neurotrophic factor interacts with adult-born immature cells in the dentate gyrus during consolidation of overlapping memories. Hippocampus 24, 905–911 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Jimenez-Mateos, E. M. et al. Silencing microRNA-134 produces neuroprotective and prolonged seizure-suppressive effects. Nat. Med. 18, 1087–1094 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Campbell, A. et al. AntimiR targeting of microRNA-134 reduces seizures in a mouse model of Angelman syndrome. Mol. Ther. Nucleic Acids 28, 514–529 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Eyileten, C. et al. The relation of the brain-derived neurotrophic factor with microRNAs in neurodegenerative diseases and ischemic stroke. Mol. Neurobiol. 58, 329–347 (2021).

    Article  PubMed  Google Scholar 

  36. Wang, G. et al. Antidepressant-like effect of ginsenoside Rb1 on potentiating synaptic plasticity via the miR-134–mediated BDNF signaling pathway in a mouse model of chronic stress-induced depression. J. Ginseng Res. 46, 376–386 (2022).

    Article  PubMed  Google Scholar 

  37. Baby, N., Alagappan, N., Dheen, S. T. & Sajikumar, S. MicroRNA‐134‐5p inhibition rescues long‐term plasticity and synaptic tagging/capture in an Aβ(1–42)-induced model of Alzheimer’s disease. Aging Cell 19, e13046 (2020).

    Article  CAS  PubMed  Google Scholar 

  38. Li, Y. et al. MicroRNA134 of ventral hippocampus is involved in cocaine extinction-induced anxiety-like and depression-like behaviors in mice. Mol. Ther. Nucleic Acids 19, 937–950 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kandel, E. R. The molecular biology of memory: cAMP, PKA, CRE, CREB‐1, CREB‐2, and CPEB. Mol. Brain 5, 14 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tao, X., Finkbeiner, S., Arnold, D. B., Shaywitz, A. J. & Greenberg, M. E. Ca2+ influx regulates BDNF transcription by a CREB family transcription factor-dependent mechanism. Neuron 20, 709–726 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Joilin, G. et al. Rapid regulation of microRNA following induction of long-term potentiation in vivo. Front. Mol. Neurosci. 7, 98 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Krol, J. et al. Characterizing light-regulated retinal microRNAs reveals rapid turnover as a common property of neuronal microRNAs. Cell 141, 618–631 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Chatterjee, S. & Grosshans, H. Active turnover modulates mature microRNA activity in Caenorhabditis elegans. Nature 461, 546–549 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Lee, D., Park, D., Park, J. H., Kim, J. H. & Shin, C. Poly(A)-specific ribonuclease sculpts the 3ʹ-ends of microRNAs. RNA 25, 388–405 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Boele, J. et al. PAPD5-mediated 3′ adenylation and subsequent degradation of miR-21 is disrupted in proliferative disease. Proc. Natl Acad. Sci. USA 111, 11467–11472 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Burroughs, A. M. et al. A comprehensive survey of 3′ animal miRNA modification events and a possible role for 3′ adenylation in modulating miRNA targeting effectiveness. Genome Res. 20, 1398–1410 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kai, Z. S. & Pasquinelli, A. E. MicroRNA assassins: factors that regulate the disappearance of miRNAs. Nat. Struct. Mol. Biol. 17, 5–10 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Katoh, T. et al. Selective stabilization of mammalian microRNAs by 3′ adenylation mediated by the cytoplasmic poly(A) polymerase GLD-2. Genes. Dev. 23, 433–438 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sharot, T., Delgado, M. R. & Phelps, E. A. How emotion enhances the feeling of remembering. Nat. Neurosci. 7, 1376–1380 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Krenz, V., Sommer, T., Alink, A., Roozendaal, B. & Schwabe, L. Noradrenergic arousal after encoding reverses the course of systems consolidation in humans. Nat. Commun. 12, 6054 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hargreaves, E. L., Rao, G., Lee, I. & Knierim, J. J. Major dissociation between medial and lateral entorhinal input to dorsal hippocampus. Science 308, 1792–1794 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Luna, V. M. et al. Adult-born hippocampal neurons bidirectionally modulate entorhinal inputs into the dentate gyrus. Science 364, 578–583 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Myers, C. E. & Scharfman, H. E. A role for hilar cells in pattern separation in the dentate gyrus: a computational approach. Hippocampus 19, 321–337 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  54. GoodSmith, D. et al. Spatial representation of granule cells and mossy cells of the dentate gyrus. Neuron 93, 677–690 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Senzai, Y. & Buzsáki, G. Physiological properties and behavioral correlates of hippocampal granule cells and mossy cells. Neuron 93, 691–704 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ikegaya, Y., Nakanishi, K., Saito, H. & Abe, K. Amygdala beta-noradrenergic influence on hippocampal long-term potentiation in vivo. Neuroreport 8, 3143–3146 (1997).

    Article  CAS  PubMed  Google Scholar 

  57. Vouimba, R. M. & Richter-Levin, G. Different patterns of amygdala priming differentially affect dentate gyrus plasticity and corticosterone, but not CA1 plasticity. Front. Neural Circuits 7, 80 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  58. McHugh, S. B. et al. Adult-born dentate granule cells promote hippocampal population sparsity. Nat. Neurosci. 25, 1481–1491 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bangasser, D. A., Wiersielis, K. R. & Khantsis, S. Sex differences in the locus coeruleus-norepinephrine system and its regulation by stress. Brain Res. 1641, 177–188 (2016).

    Article  CAS  PubMed  Google Scholar 

  60. Borodovitsyna, O., Tkaczynski, J. A., Corbett, C. M., Loweth, J. A. & Chandler, D. J. Age- and sex-dependent changes in locus coeruleus physiology and anxiety-like behavior following acute stressor exposure. Front. Behav. Neurosci. 16, 808590 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Joshi, N. & Chandler, D. Sex and the noradrenergic system. In Handbook of Clinical Neurology, Vol. 175 (eds Lanzenberger, R., et al.) 167–176 (Elsevier, 2020).

  62. Yagi, S., Chow, C., Lieblich, S. E. & Galea, L. A. M. Sex and strategy use matters for pattern separation, adult neurogenesis, and immediate early gene expression in the hippocampus. Hippocampus 26, 87–101 (2016).

    Article  CAS  PubMed  Google Scholar 

  63. Yagi, S., Lee, A., Truter, N. & Galea, L. A. M. Sex differences in contextual pattern, and functional connectivity within the limbic system. Biol. Sex. Differ. 13, 42 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Edwards, C. M., Dolezel, T. & Rinaman, L. Sex and metabolic state interact to influence expression of passive avoidance memory in rats: potential contribution of A2 noradrenergic neurons. Physiol. Behav. 239, 113511 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Graham, B. M. & Scott, E. Effects of systemic estradiol on fear extinction in female rats are dependent on interactions between dose, estrous phase, and endogenous estradiol levels. Horm. Behav. 97, 67–74 (2018).

    Article  CAS  PubMed  Google Scholar 

  66. Do Nascimento, E. B. et al. Memory impairment induced by different types of prolonged stress is dependent on the phase of the estrous cycle in female rats. Horm. Behav. 115, 104563 (2019).

    Article  PubMed  Google Scholar 

  67. Kirry, A. J., Durigan, D. J., Twining, R. C. & Gilmartin, M. R. Estrous cycle stage gates sex differences in prefrontal muscarinic control of fear memory formation. Neurobiol. Learn. Mem. 161, 26–36 (2019).

    Article  CAS  PubMed  Google Scholar 

  68. Paxinos, G. & Watson, C. The Rat Brain in Stereotaxic Coordinates, 6th edn (Academic, 2007).

  69. Schmittgen, T. D., Jiang, J., Liu, Q. & Yang, L. A high-throughput method to monitor the expression of microRNA precursors. Nucleic Acids Res. 32, e43 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Schmittgen, T. D. et al. Real-time PCR quantification of precursor and mature microRNA. Methods 44, 31–38 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Atucha, E. et al. Noradrenergic activation of the basolateral amygdala facilitates memory specificity for similar events experienced close in time-source data. Zenodo https://doi.org/10.5281/zenodo.15496898 (2025).

Download references

Acknowledgements

Funding was provided by Radboud University Topfund (to B.R.); Dutch Research Council Open Research Area grant (no. 464.18.110 to B.R.), and European Community’s Seventh Framework Programme (no. FP7/2007–2013) and Horizon 2020 Programme under grant agreement nos. 603016 and 667302 (to J.C.G.).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: E.A. and B.R. Data acquisition: E.A., M.P., G.R., C.S., P.A., D.R., K.L., G.S. and B.R. Funding acquisition: J.C.G. and B.R. Supervision: J.C.G., A.A. and B.R. Writing—original draft: E.A. and B.R. Writing—review and editing: J.L.M., J.C.G. and A.A. J.C.G. and A.A. contributed equally.

Corresponding authors

Correspondence to Erika Atucha or Benno Roozendaal.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Neuroscience thanks Michael Fanselow, Ki Goosens, Natalie Tronson and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 NE administration into the BLA of home-cage control rats does not affect miR-134, CREB or BDNF levels within the dDG.

NE (1.0 µg in 0.2 µl) was administered unilaterally into one BLA and saline into the other BLA, counterbalanced across animals, of home-cage control rats. NE administration did not affect miR-134, CREB or BDNF levels within the dDG 30 min later. mRNA levels are normalized to the saline-treated hemisphere (mean + s.e.m.) (n = 9, paired Student’s t-test: miR-134: t8 = 0.52, P = 0.62; CREB: t8 = 0.46, P = 0.66; BDNF: t8 = 0.98, P = 0.36).

Extended Data Fig. 2 Ant-134 administration into the dHPC does not alter Arc, Npas4 or c-Fos levels within the dDG.

Ant-134 (10 pmol in 0.5 µl) was administered unilaterally into one dHPC and scrambled control (Scr, 10 pmol in 0.5 µl) into the other dHPC, counterbalanced across animals, immediately after training on the dual-event inhibitory avoidance task. Ant-134 administration did not affect mRNA levels of several plasticity-related genes that are considered non-targets of miR-134 within the dDG 30 min later. mRNA levels are normalized to the scrambled-treated hemisphere (mean + s.e.m.) (n = 7, paired Student’s t-test: activity-regulated cytoskeleton-associated protein (Arc): t6 = 1.73, P = 0.13; neuronal PAS domain protein 4 (Npas4): t6 = 1.86, P = 0.11; c-Fos: t6 = 1.09, P = 0.32).

Extended Data Fig. 3 Noradrenergic activation of the BLA does not increase CREB or pCREB protein levels within the ventral blade of the DG.

NE (1.0 µg in 0.2 µl) was administered unilaterally into one BLA and saline into the other BLA, counterbalanced across animals, immediately after training on the dual-event inhibitory avoidance task. NE administration did not affect CREB or pCREB protein levels within the ventral blade of the DG granule cell layer 3 h later. Protein levels are normalized to the saline-treated hemisphere (mean + s.e.m.) (n = 7, paired Student’s t-test: CREB: t6 = 1.43, P = 0.20; pCREB: t6 = 1.01, P = 0.35).

Extended Data Fig. 4 Overexpression of miR-134 in the dHPC induces an efficient down-regulation of CREB and BDNF mRNA levels within the dDG.

Mimic-134 (0.25 pmol in 0.5 µl) was administered unilaterally into one dHPC and non-target control (NT, 0.25 pmol in 0.5 µl) into the other dHPC, counterbalanced across animals, immediately after training on the dual-event inhibitory avoidance task. Mimic-134 administration resulted in a 6.60 ± 0.91 log2FC (mean ± s.e.m) increase in total-tissue miR-134 levels within the dDG 30 min later (n = 6, paired Student’s t-test: t5 = 7.26, P < 0.01). mRNA levels are normalized to the non-target-treated hemisphere (mean + s.e.m.) (n = 6, paired Student’s t-test: CREB: t5 = 3.22, P < 0.05; BDNF: t5 = 3.28, P < 0.05). *P < 0.05 vs non-target.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atucha, E., Pais, M., Ronzoni, G. et al. Noradrenergic activation of the basolateral amygdala facilitates memory specificity for similar events experienced close in time. Nat Neurosci 28, 1910–1918 (2025). https://doi.org/10.1038/s41593-025-02014-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41593-025-02014-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing