Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Phase separation promotes Atg8 lipidation and vesicle condensation for autophagy progression

Abstract

Upon starvation, the autophagy-initiating Atg1 complex undergoes phase separation to organize the preautophagosomal structure (PAS) in Saccharomyces cerevisiae, from which autophagosome formation is considered to proceed. However, the physiological roles of the PAS droplet remain unclear. Here we show that core Atg proteins are recruited into early PAS droplets that are formed by phase separation of the Atg1 complex with different efficiencies in vitro. The Atg12–Atg5–Atg16 E3 ligase complex for Atg8 lipidation is the most efficiently condensed in the droplets through specific Atg12–Atg17 interaction, which is also important for the PAS targeting of the E3 complex in vivo. In vitro reconstitution demonstrates that E3-enriched early PAS droplets promote Atg8 lipidation and that Atg8 coating of the vesicle membrane is both necessary and sufficient for their condensation into the droplets. These data suggest that the PAS functions as an efficient production site for lipidated Atg8 and pools membrane seeds to drive autophagosome formation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The Atg12–Atg5–Atg16 complex is efficiently condensed in early PAS droplets.
Fig. 2: Structural basis of the Atg12–Atg17 interaction.
Fig. 3: The Atg12–Atg17 interaction is responsible for the in vitro and in vivo condensation of the E3 complex in the droplet.
Fig. 4: Early PAS droplets promote Atg8 lipidation and inhibit Atg8–PE delipidation in vitro.
Fig. 5: The Atg12–Atg17 interaction is important for autophagy in the absence of Atg21.
Fig. 6: Early PAS droplets incorporate Atg8-coated vesicles through two distinct pathways.
Fig. 7: Atg8 coating is important for the condensation of the vesicles into the early PAS droplets.

Similar content being viewed by others

Data availability

Microscopic images are available from figshare (https://doi.org/10.6084/m9.figshare.29874152)61. Chemical shift information for NMR analyses is available from the BMRB under accession code 52732. All other data supporting the findings of this study are available from the corresponding authors on reasonable request. Source data are provided with this paper.

References

  1. Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. K. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285–298 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Boeynaems, S. et al. Protein phase separation: a new phase in cell biology. Trends Cell Biol. 28, 420–435 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhang, Y., Narlikar, G. J. & Kutateladze, T. G. Enzymatic reactions inside biological condensates. J. Mol. Biol. 433, 166624 (2021).

    Article  CAS  PubMed  Google Scholar 

  4. Sansevrino, R., Hoffmann, C. & Milovanovic, D. Condensate biology of synaptic vesicle clusters. Trends Neurosci. 46, 293–306 (2023).

    Article  CAS  PubMed  Google Scholar 

  5. Zhang, Y. & Seemann, J. RNA scaffolds the Golgi ribbon by forming condensates with GM130. Nat. Cell Biol. 26, 1139–1153 (2024).

    Article  CAS  PubMed  Google Scholar 

  6. Fujioka, Y. & Noda, N. N. Biomolecular condensates in autophagy regulation. Curr. Opin. Cell Biol. 69, 23–29 (2021).

    Article  CAS  PubMed  Google Scholar 

  7. Zhang, G., Wang, Z., Du, Z. & Zhang, H. mTOR regulates phase separation of PGL granules to modulate their autophagic degradation. Cell 174, 1492–1506 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. Yamasaki, A. et al. Liquidity is a critical determinant for selective autophagy of protein condensates. Mol. Cell 77, 1163–1175 (2020).

    Article  CAS  PubMed  Google Scholar 

  9. Ma, X. et al. CCT2 is an aggrephagy receptor for clearance of solid protein aggregates. Cell 185, 1325–1345 (2022).

    Article  CAS  PubMed  Google Scholar 

  10. Sun, D., Wu, R., Zheng, J., Li, P. & Yu, L. Polyubiquitin chain-induced p62 phase separation drives autophagic cargo segregation. Cell Res. 28, 405–415 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nakatogawa, H. Mechanisms governing autophagosome biogenesis. Nat. Rev. Mol. Cell Biol. 21, 439–458 (2020).

    Article  CAS  PubMed  Google Scholar 

  12. Suzuki, K. et al. The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation. EMBO J. 20, 5971–5981 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fujioka, Y. et al. Phase separation organizes the site of autophagosome formation. Nature 578, 301–305 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. Noda, N. N. & Inagaki, F. Mechanisms of autophagy. Annu. Rev. Biophys. 44, 101–122 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Yamamoto, H. et al. Atg9 vesicles are an important membrane source during early steps of autophagosome formation. J. Cell Biol. 198, 219–233 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Matoba, K. et al. Atg9 is a lipid scramblase that mediates autophagosomal membrane expansion. Nat. Struct. Mol. Biol. 27, 1185–1193 (2020).

    Article  CAS  PubMed  Google Scholar 

  17. Mari, M. et al. An Atg9-containing compartment that functions in the early steps of autophagosome biogenesis. J. Cell Biol. 190, 1005–1022 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Harada, K. et al. Two distinct mechanisms target the autophagy-related E3 complex to the pre-autophagosomal structure. eLife 8, e43088 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Humphreys, I. R. et al. Computed structures of core eukaryotic protein complexes. Science 374, eabm4805 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sawa-Makarska, J. et al. Reconstitution of autophagosome nucleation defines Atg9 vesicles as seeds for membrane formation. Science 369, eaaz7714 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Juris, L. et al. PI3P binding by Atg21 organises Atg8 lipidation. EMBO J. 34, 955–973 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Munzel, L. et al. Atg21 organizes Atg8 lipidation at the contact of the vacuole with the phagophore. Autophagy 17, 1458–1478 (2021).

    Article  CAS  PubMed  Google Scholar 

  24. Torggler, R., Papinski, D. & Kraft, C. Assays to monitor autophagy in Saccharomyces cerevisiae. Cells 6, 23 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Nakatogawa, H. et al. The autophagy-related protein kinase Atg1 interacts with the ubiquitin-like protein Atg8 via the Atg8 family interacting motif to facilitate autophagosome formation. J. Biol. Chem. 287, 28503–28507 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Alam, J. M. et al. Complete set of the Atg8–E1–E2–E3 conjugation machinery forms an interaction web that mediates membrane shaping. Nat. Struct. Mol. Biol. 31, 170–178 (2024).

    Article  CAS  PubMed  Google Scholar 

  27. Nakatogawa, H., Ishii, J., Asai, E. & Ohsumi, Y. Atg4 recycles inappropriately lipidated Atg8 to promote autophagosome biogenesis. Autophagy 8, 177–186 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. Nair, U. et al. A role for Atg8–PE deconjugation in autophagosome biogenesis. Autophagy 8, 780–793 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yu, Z. Q. et al. Dual roles of Atg8–PE deconjugation by Atg4 in autophagy. Autophagy 8, 883–892 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li, J. et al. Feedback regulation of ubiquitination and phase separation of HECT E3 ligases. Proc. Natl Acad. Sci. USA 120, e2302478120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shima, T., Kirisako, H. & Nakatogawa, H. COPII vesicles contribute to autophagosomal membranes. J. Cell Biol. 218, 1503–1510 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tojima, T., Suda, Y., Jin, N., Kurokawa, K. & Nakano, A. Spatiotemporal dissection of the Golgi apparatus and the ER–Golgi intermediate compartment in budding yeast. eLife 13, e92900 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ge, L., Melville, D., Zhang, M. & Schekman, R. The ER–Golgi intermediate compartment is a key membrane source for the LC3 lipidation step of autophagosome biogenesis. eLife 2, e00947 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Milovanovic, D., Wu, Y., Bian, X. & De Camilli, P. A liquid phase of synapsin and lipid vesicles. Science 361, 604–607 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bailey, A. L. & Cullis, P. R. Liposome fusion. Curr. Top. Membr. 44, 359–373 (1997).

    Article  CAS  Google Scholar 

  36. Nakatogawa, H., Ichimura, Y. & Ohsumi, Y. Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion. Cell 130, 165–178 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Maruyama, T. et al. Membrane perturbation by lipidated Atg8 underlies autophagosome biogenesis. Nat. Struct. Mol. Biol. 28, 583–593 (2021).

    Article  CAS  PubMed  Google Scholar 

  38. Knorr, R. L. et al. Membrane morphology is actively transformed by covalent binding of the protein Atg8 to PE-lipids. PLoS ONE 9, e115357 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Rogov, V. V. et al. Atg8 family proteins, LIR/AIM motifs and other interaction modes. Autophagy Rep. 2, 2188523 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Yamamoto, H. et al. The intrinsically disordered protein Atg13 mediates supramolecular assembly of autophagy initiation complexes. Dev. Cell 38, 86–99 (2016).

    Article  CAS  PubMed  Google Scholar 

  41. Noda, N. N. et al. Structural basis of Atg8 activation by a homodimeric E1, Atg7. Mol. Cell 44, 462–475 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Yamada, Y. et al. Crystallization and preliminary X-ray analysis of Atg3. Acta Crystallogr. F Struct. Biol. Cryst. Commun. 62, 1016–1017 (2006).

    Article  CAS  Google Scholar 

  43. Kumeta, H. et al. The NMR structure of the autophagy-related protein Atg8. J. Biomol. NMR 47, 237–241 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Hanada, T. et al. The Atg12–Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy. J. Biol. Chem. 282, 37298–37302 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Matsushita, M., Suzuki, N. N., Fujioka, Y., Ohsumi, Y. & Inagaki, F. Expression, purification and crystallization of the Atg5–Atg16 complex essential for autophagy. Acta Crystallogr. F Struct. Biol. Cryst. Commun. 62, 1021–1023 (2006).

    Article  CAS  Google Scholar 

  46. Noda, N. N., Fujioka, Y., Hanada, T., Ohsumi, Y. & Inagaki, F. Structure of the Atg12–Atg5 conjugate reveals a platform for stimulating Atg8–PE conjugation. EMBO Rep. 14, 206–211 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Kobashigawa, Y., Kumeta, H., Ogura, K. & Inagaki, F. Attachment of an NMR-invisible solubility enhancement tag using a sortase-mediated protein ligation method. J. Biomol. NMR 43, 145–150 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Matsushita, M. et al. Structure of Atg5·Atg16, a complex essential for autophagy. J. Biol. Chem. 282, 6763–6772 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Rostislavleva, K. et al. Structure and flexibility of the endosomal Vps34 complex reveals the basis of its function on membranes. Science 350, aac7365 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Osawa, T. et al. Atg2 mediates direct lipid transfer between membranes for autophagosome formation. Nat. Struct. Mol. Biol. 26, 281–288 (2019).

    Article  CAS  PubMed  Google Scholar 

  51. Thomas, B. J. & Rothstein, R. Elevated recombination rates in transcriptionally active DNA. Cell 56, 619–630 (1989).

    Article  CAS  PubMed  Google Scholar 

  52. Hitomi, K., Kotani, T., Noda, N. N., Kimura, Y. & Nakatogawa, H.The Atg1 complex, Atg9, and Vac8 recruit PI3K complex I to the pre-autophagosomal structure. J. Cell Biol. 222, e202210017 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kuma, A., Mizushima, N., Ishihara, N. & Ohsumi, Y. Formation of the approximately 350-kDa Apg12–Apg5·Apg16 multimeric complex, mediated by Apg16 oligomerization, is essential for autophagy in yeast. J. Biol. Chem. 277, 18619–18625 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Kabeya, Y. et al. Atg17 functions in cooperation with Atg1 and Atg13 in yeast autophagy. Mol. Biol. Cell 16, 2544–2553 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kotani, T. et al. A mechanism that ensures non-selective cytoplasm degradation by autophagy. Nat. Commun. 14, 5815 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Shintani, T., Suzuki, K., Kamada, Y., Noda, T. & Ohsumi, Y. Apg2p functions in autophagosome formation on the perivacuolar structure. J. Biol. Chem. 276, 30452–30460 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Obara, K., Sekito, T., Niimi, K. & Ohsumi, Y. The Atg18–Atg2 complex is recruited to autophagic membranes via phosphatidylinositol 3-phosphate and exerts an essential function. J. Biol. Chem. 283, 23972–23980 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Nakatogawa, H. & Ohsumi, Y. SDS–PAGE techniques to study ubiquitin-like conjugation systems in yeast autophagy. Methods Mol. Biol. 832, 519–529 (2012).

    Article  CAS  PubMed  Google Scholar 

  59. Tsuji, T. et al. Predominant localization of phosphatidylserine at the cytoplasmic leaflet of the ER, and its TMEM16K-dependent redistribution. Proc. Natl Acad. Sci. USA. 116, 13368–13373 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Marsh, J. A., Singh, V. K., Jia, Z. & Forman-Kay, J. D. Sensitivity of secondary structure propensities to sequence differences between α- and γ-synuclein: implications for fibrillation. Protein Sci. 15, 2795–2804 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Fujioka, Y., Tsuji, T. & Noda, N. Microscopic images of autophagy-related condensates. figshare https://doi.org/10.6084/m9.figshare.29874152 (2025).

Download references

Acknowledgements

We thank Y. Ohashi and R. L. Williams for providing the plasmids to purify the PI3K proteins, H. Yamamoto for providing the plasmids for expressing the Atg17 mutants, Y. Ishikawa, K. Marumo, S. Kurazono and E. W. Caldwell for assistance with the protein preparation, A. Saito for assistance with electron microscopy sample preparation, and Y. Ogasawara for assistance with fluorescence imaging quantification. We thank the Open Facility, Global Research Facility Alliance Center, Office for Integrated Technical Core Hub, Hokkaido University for allowing us to conduct the analysis of Replica using JEM-1400plus TEM. This work was supported in part by JSPS KAKENHI (JP21H05731, JP23H02429, JP23H04923 and JP23K27122 to Y.F.; JP22K06818 and JP22H04654 to T.T.; JP22K06123 and JP25K09544 to T.K.; JP22H00446 to T.F.; JP22K19282 to H.K.; JP19H05708 and JP25H01322 to H.N.; JP23K20044 to H.N. and N.N.N.; JP19H05707, JP24H00060, JP25H00966, JP25H01320 and JP25H01321 to N.N.N.), PRIME, Japan Agency for Medical Research and Development (JP20gm6410009 to Y.F.), CREST, Japan Science and Technology Agency (JPMJCR20E3 to N.N.N.), a grant from the Nagase Science and Technology Foundation (to H.N.) and grants from the Takeda Science Foundation (to Y.F., H.N. and N.N.N.).

Author information

Authors and Affiliations

Authors

Contributions

Y.F. and N.N.N. conceptualized the project. Y.F. performed the in vitro experiments. T.T. and T.F. performed the replica electron microscopy. H.K. performed the NMR analysis. Y.F., T.K., J.S., C.K. and H.N. performed the yeast experiments. All authors analyzed the data. Y.F. and N.N.N. wrote the paper with input from all other authors. Y.F. and N.N.N. supervised the work.

Corresponding authors

Correspondence to Yuko Fujioka or Nobuo N. Noda.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Structural & Molecular Biology thanks Liang Ge and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available. Primary Handling Editors: George Inglis and Melina Casadio, in collaboration with the Nature Structural & Molecular Biology team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Purification of recombinant proteins and characterization of tagging effects on autophagy.

a, SDS-PAGE image of the proteins used for Fig. 1 experiments. b, Cells expressing Pgk1-GFP were treated with rapamycin and examined by immunoblotting using an antibody against GFP. The band intensities of Pgk1-GFP and its cleaved fragments (GFP’) were measured using Fiji. The proportion (%) of GFP’ relative to the total signal (Pgk1-GFP + GFP’) was calculated and regarded as the degradation of Pgk1-GFP. Bars represent means ± s.d., n = 3 biological replicates. (a two-sided Tukey’s multiple comparisons test with adjustments for multiple comparisons). c, FRAP analysis of the Atg12-Atg5-Atg16 complex at Early PAS droplets. Bars represent means ± s.d., n = 3 biological replicates. Scale bar = 2 μm.

Source data

Extended Data Fig. 2 NMR analysis of GB1–Atg1217BH.

a, Main chain assignment results are shown on [1H-15N] heteronuclear single quantum coherence spectroscopy (HSQC); GB1-derived signals are labeled in black, and Atg12-derived signals are labeled in blue. b, Superposition of [1H-15N] HSQC obtained by titration experiments. c, Signal intensity ratios before and after the addition of Atg17–Atg31C are plotted by residue (GB1 is shown in gray and Atg12 in orange, 0.1, 0.5, and 1.0 molar equivalents from top to bottom). The signal-to-noise ratio of the signals was used to calculate the error bars (n = 1 experiment). d, Secondary structure propensity analysis results (GB1 is shown in gray and Atg12 in orange). The secondary structure position in the GB1 structure is attached.

Source data

Extended Data Fig. 3 Specific Atg1217BH–Atg17 interaction is important for the condensation at the droplet both in vitro and in vivo.

a, Condensation of GFP–Atg1217BH at the early PAS droplets was impaired by mutations. Scale bar = 10 μm. b, Cells expressing Atg12 or Atg17 mutants were treated with rapamycin, and the amounts of Atg12-Atg5-GFP and Atg17-2×mCherry were analyzed by immunoblotting using anti-GFP and anti-mCherry antibodies. c, PAS targeting of the Atg12–Atg5–Atg16 complex was impaired by mutations. Scale bar = 5 μm. d, Overall view of Fig. 3e. The box represents the interquartile range (IQR) with the median indicated by a horizontal line; whiskers extend to the most extreme data points within 1.5×IQR from the quartiles, and points beyond are plotted as outliers. Number of PAS puncta: n = 1,548 (WT), 1,990 (V43A), 1,815 (L47A), 1,710 (L54A), and 1,829 (L57A).

Source data

Extended Data Fig. 4 Effect of the PAS droplets, Atg21, and PI3P on Atg8 lipidation and delipidation.

a, Overall gel image of Fig. 4b. b, Overall gel image of Fig. 4d. c, Overall gel image of Fig. 4f. d, Investigation of conditions for terminating the Atg8 lipidation reaction. Treatment with 100 mM DTT largely suppressed Atg8 lipidation when the E3 concentration was 0.1 μM, but could not halt it when the E3 concentration was 1 μM. In contrast, treatment with an ATP-eliminating agent (CheckLite 250 Plus) completely stopped Atg8 lipidation even at an E3 concentration of 1 μM. This experiment was performed once. e, Overall gel image of Fig. 4h. f, Overall gel image of Fig. 4j.

Source data

Extended Data Fig. 5 In vitro Atg21 and PI3P-dependent targeting of the Atg5–Atg16 complex to the PAS droplets observed by fluorescence microscopy.

Representative images from n = 3 experiments. Scale bar = 10 μm.

Extended Data Fig. 6 Replica electron microscopy of the early PAS droplets.

a, Replica electron microscopy with or without etching. Representative images from n = 1 experiment (for without etching) and n = 3 experiments (for with etching). Scale bar = 200 nm. b, Replica electron microscopy of liposomes outside the droplets. Representative images from n = 3 experiments. Scale bar = 50 nm. c, Replica electron microscopy in the presence of Atg21 but in the absence of Atg12–Atg17 interaction. Representative images from n = 1 experiment. Scale bar = 200 nm. d, Proposed model of the processes in the PAS droplet during autophagy initiation.

Extended Data Fig. 7 Mechanistic analysis of liposome uptake into droplets.

a, Observation of BODIPY or NBD-PE-containing liposomes at the early PAS droplets with or without Atg8 lipidation reaction. Fluorescence images obtained with and without ATP were acquired on the same microscope under identical imaging settings (laser power, gain, and scan speed). This experiment was performed once. Scale bar = 10 μm. Yellow lines = 5.1, 4.3, 4.7, and 5.7 μm from left to right. b, FRAP analysis of R18-liposomes at early PAS droplets. Scale bar = 2 μm. Bars in the graph represent means ± s.d., n = 5 biological replicates. c, Observation of R18-containing liposomes with various concentrations of DOTAP at the early PAS droplets. Bottom shows the line profile along the yellow line. This experiment was performed once except for 50% DOTAP, which was performed three times with similar results. Scale bar = 10 μm. d, Effect of AIM WT or AIM mutant treatment on the interaction between GST-Atg8 and Atg1 analyzed by in vitro pulldown assay. This experiment was performed once. e, Observation of R18-containing liposomes with AIM WT or AIM mutant at the early PAS droplets. Bottom shows the line profile along the yellow line. This experiment was performed once. Scale bar = 10 μm.

Source data

Supplementary information

Supplementary Information

Supplementary Tables 1 and 2 and Methods.

Reporting Summary

Peer Review File

Source data

Source Data Fig. 1

Graph source data.

Source Data Fig. 2

Graph source data.

Source Data Fig. 2

Unprocessed western blots.

Source Data Fig. 3

Graph source data.

Source Data Fig. 4

Graph source data.

Source Data Fig. 4

Unprocessed western blots.

Source Data Fig. 5

Graph source data.

Source Data Fig. 5

Unprocessed western blots.

Source Data Fig. 6

Graph source data.

Source Data Fig. 7

Graph source data.

Source Data Fig. 7

Unprocessed western blots.

Source Data Extended Data Fig. 1

Graph source data.

Source Data Extended Data Fig. 1

Unprocessed western blots.

Source Data Extended Data Fig. 2

Graph source data.

Source Data Extended Data Fig. 3

Graph source data.

Source Data Extended Data Fig. 3

Unprocessed western blots.

Source Data Extended Data Fig. 4

Unprocessed western blots.

Source Data Extended Data Fig. 7

Graph source data.

Source Data Extended Data Fig. 7

Unprocessed western blots.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fujioka, Y., Tsuji, T., Kotani, T. et al. Phase separation promotes Atg8 lipidation and vesicle condensation for autophagy progression. Nat Struct Mol Biol (2025). https://doi.org/10.1038/s41594-025-01678-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41594-025-01678-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing