Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Articles in 2025

Filter By:

  • A turn-key-operable hybrid integrated Pockels laser based on an external distributed Bragg waveguide grating reflector fabricated in a wafer-scale thin-film lithium niobate on insulator platform is demonstrated, with a tuning efficiency of over 550 MHz V–1, tuning rates reaching the exahertz per second, and a high output power of 15 mW.

    • Anat Siddharth
    • Simone Bianconi
    • Tobias J. Kippenberg
    Article
  • An ultra-compact, ultra-wide-bandwidth in-phase/quadrature modulator on a silicon chip is demonstrated, enabling coherent transmission for symbol rates up to 180 Gbaud and a net bit rate surpassing 1 Tb s−1 over an 80 km span, with modulation energy consumption as low as 10.4 fJ bit−1, and promising enhanced performance and scalability for future networking infrastructures.

    • Alireza Geravand
    • Zibo Zheng
    • Wei Shi
    Article
  • Combining advanced photonics with reconfigurable liquid crystalline self-assembled structures allows control of a liquid crystal’s microlaser emission by nanosecond optical pulses and the ability to switch off the laser emission from the liquid crystal using the resonant stimulated-emission depletion process, providing a design for a new class of photonic integrated devices.

    • Mahendran Vellaichamy
    • Uroš Jagodič
    • Igor Muševič
    ArticleOpen Access
  • A quantum kernel estimation by which feature data points are evaluated through the unitary evolution of two-boson Fock states is experimentally demonstrated on a photonic integrated processor. This model provides enhanced accuracy with respect to commonly used classical methods for several classification tasks.

    • Zhenghao Yin
    • Iris Agresti
    • Philip Walther
    ArticleOpen Access
  • By leveraging microcavity-integrated photonics and Kerr-induced optical frequency division, an integrated photonic millimetre-wave oscillator with low phase noise is demonstrated, achieving –77 dBc Hz–1 and –121 dBc Hz–1, respectively, at 100-Hz and 10-kHz offset frequencies, corresponding to –98 dBc Hz–1 and –142 dBc Hz–1 when scaled to a 10-GHz carrier.

    • Shuman Sun
    • Mark W. Harrington
    • Xu Yi
    Article
  • A compact optical frequency division system with magnesium-fluoride-microresonator-based frequency references and silicon-nitride-microresonator-based comb generators is reported, offering a soliton pulse train at 25-GHz microwaves with an absolute phase noise of –141 dBc Hz–1 and timing noise below 546 zs Hz–1/2 at a 10-kHz offset frequency.

    • Xing Jin
    • Zhenyu Xie
    • Qi-Fan Yang
    Article
  • Chirality-induced quantum non-reciprocity of cross-channel correlations is demonstrated in a rubidium vapour system by flipping the flow direction of one of the circularly polarized laser beams. It can be extended to multicolour sidebands with Floquet engineering.

    • Zimo Zhang
    • Zhongxiao Xu
    • Heng Shen
    Article
  • Exploiting the polariton-enhanced Purcell effect in tandem organic light-emitting diodes enables deep-blue-emitting devices with an external quantum efficiency of 36.8% and an LT90 lifetime of 830 h at an initial luminance of 500 cd m−2. These metrics are increased to 56% and 1,800 h with substrate light outcoupling.

    • Haonan Zhao
    • Claire E. Arneson
    • Stephen R. Forrest
    Article
  • Using two-point optical frequency division based on a frequency-agile single-mode dispersive wave, a microwave signal source with record-low phase noise using a microcomb is demonstrated, offering over tenfold lower phase noise than state-of-the-art approaches.

    • Qing-Xin Ji
    • Wei Zhang
    • Kerry Vahala
    ArticleOpen Access
  • Cross-polarized stimulated Brillouin scattering and its integration with quadratic nonlinearity is studied in lithium niobate, which enhanced photonic device performance in a reconfigurable stimulated Brillouin laser with 0.7-Hz narrow linewidth and 40-nm tunability, an efficient coherent mode converter, and Brillouin-quadratic laser and frequency comb operational in near-infrared and visible bands.

    • Mingming Nie
    • Jonathan Musgrave
    • Shu-Wei Huang
    Article
  • Phonon polariton quasi-bound states in the continuum realized in a dielectric metasurface patterned with a subwavelength lattice of elliptical holes in a commercially available free-standing, large-area 100-nm-thick silicon carbide membrane is demonstrated, attractive for applications in mid-infrared optics, such as molecular sensing and thermal radiation engineering.

    • Lin Nan
    • Andrea Mancini
    • Stefan A. Maier
    ArticleOpen Access
  • Intense squeezed light with focusable intensities of 0.1 TW cm2 is created by propagating a classical, intense and noisy input beam through an optical fibre. The noise 4 dB below the shot-noise level is achieved by selecting a set of wavelengths whose intensity fluctuations are maximally anticorrelated.

    • Shiekh Zia Uddin
    • Nicholas Rivera
    • Marin Soljačić
    Article

Search

Quick links