Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 7531 results
Advanced filters: Author: A Bell Clear advanced filters
  • Silicon-based spin qubits are promising candidates for a scalable quantum computer. Here the authors demonstrate the violation of Bell’s inequality in gate-defined quantum dots in silicon, marking a significant advancement that showcases the maturity of this platform.

    • Paul Steinacker
    • Tuomo Tanttu
    • Arne Laucht
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-9
  • Multielectron quantum dots offer a promising platform for high-performance spin qubits; however, previous demonstrations have been limited to single-qubit operation. Here, the authors report a universal gate set and two-qubit Bell state tomography in a high-occupancy double quantum dot in silicon.

    • Ross C. C. Leon
    • Chih Hwan Yang
    • Andrew S. Dzurak
    ResearchOpen Access
    Nature Communications
    Volume: 12, P: 1-6
  • Entangled particles some distance apart can be used to show the strikingly nonlocal nature of quantum mechanics. Here the authors generate spatially separated pairs of helium atoms by colliding Bose-Einstein condensates and show that they are entangled by observing nonlocal correlations.

    • D. K. Shin
    • B. M. Henson
    • A. G. Truscott
    ResearchOpen Access
    Nature Communications
    Volume: 10, P: 1-7
  • Researchers demonstrate that Bell's measure — a commonly used test of quantum nonlocality — can be used in classical optical schemes to separate incoherence associated with statistical fluctuations from incoherence based on correlation. This technique may be useful for quantum information applications such as classical optical coherence theory and optical signal processing.

    • Kumel H. Kagalwala
    • Giovanni Di Giuseppe
    • Bahaa E. A. Saleh
    Research
    Nature Photonics
    Volume: 7, P: 72-78
  • Bell inequalities are a quantitative measure that can distinguish classically determined correlations from stronger quantum correlations, and their measurement provides strong experimental evidence that quantum mechanics provides a complete description. The violation of a Bell inequality is now demonstrated in a solid-state system; the experiment provides further strong evidence that a macroscopic electrical circuit is really a quantum system.

    • Markus Ansmann
    • H. Wang
    • John M. Martinis
    Research
    Nature
    Volume: 461, P: 504-506
  • A study demonstrates a public generator of random numbers based on device-independent techniques, with the randomness being fully auditable and traceable.

    • Gautam A. Kavuri
    • Jasper Palfree
    • Lynden K. Shalm
    Research
    Nature
    Volume: 642, P: 916-921
  • Web summaryHarnessing the entanglement of different ionic species could bring new flexibility in quantum computing, and now two groups independently demonstrate entanglement between different atomic species; Ballance et al. achieve entanglement between different atomic isotopes, whereas the related paper by Tan et al. shows entanglement between different elements, together demonstrating a first step towards mixed-species quantum logic.

    • C. J. Ballance
    • V. M. Schäfer
    • D. M. Lucas
    Research
    Nature
    Volume: 528, P: 384-386
  • A violation of Bell's inequality, which is a direct proof of entanglement, can be observed in the solid state using the electron and nuclear spins of a single phosphorus atom in silicon.

    • Juan P. Dehollain
    • Stephanie Simmons
    • Andrea Morello
    Research
    Nature Nanotechnology
    Volume: 11, P: 242-246
  • Here it is shown, both theoretically and experimentally, that non-local correlations between entangled quantum particles can be used for a new cryptographic application — the generation of certified private random numbers — that is impossible to achieve classically. The results have implications for future device-independent quantum information experiments and for addressing fundamental issues regarding the randomness of quantum theory.

    • S. Pironio
    • A. Acín
    • C. Monroe
    Research
    Nature
    Volume: 464, P: 1021-1024
  • Quantum information processing normally uses either discrete- or continuous-variable encoding. Here, the authors bridge the two approaches, showing how to entangle Schrodinger’s cats states by conversion between Bell states in the Fock and cat bases and by a simple Fock-state-like gate operation.

    • Daisuke Hoshi
    • Toshiaki Nagase
    • Jaw-Shen Tsai
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-10
  • Over 20 species of geographically and phylogenetically diverse bird species produce convergent whining vocalizations towards their respective brood parasites. Model presentation and playback experiments across multiple continents suggest that these learned calls provoke an innate response even among allopatric species.

    • William E. Feeney
    • James A. Kennerley
    • Damián E. Blasi
    Research
    Nature Ecology & Evolution
    P: 1-13
  • Bell’s theorem has important implications for quantum information processing. Here the authors experimentally investigate the violation of a Bell-like inequality in the case of distant parties whose correlations are mediated by independent sources, a realistic feature in future quantum networks.

    • Gonzalo Carvacho
    • Francesco Andreoli
    • Fabio Sciarrino
    ResearchOpen Access
    Nature Communications
    Volume: 8, P: 1-6
  • Future quantum networks will require entangled photons operating in the telecommunications band, so they can integrate with existing architectures. Ward et al.present a quantum-dot-entangled-photon-pair source in this region and a method to measure the fidelity of a time-evolving Bell state.

    • M.B. Ward
    • M.C. Dean
    • A.J. Shields
    Research
    Nature Communications
    Volume: 5, P: 1-6
  • Noise-induced synchronization is known in classical systems and has recently been proposed in quantum many-body settings. Here, the authors experimentally demonstrate stable and entangled synchronized oscillations at the ends of a superconducting qubit chain by applying Gaussian noise to a single qubit.

    • Ziyu Tao
    • Finn Schmolke
    • Eric Lutz
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-7
  • Quantum phenomena can often be explored in a more accessible way by so called quantum analogues, making its understanding and applications more achievable. The authors experimentally realise acoustic Bell states by superposition of coupled 1D elastic waveguides, which allows them to explore a section of the Bell’s state Hilbert space by tuning the complex amplitude coefficients, opening options to exploring quantum entanglement with a classical equivalent from phononics.

    • M. Arif Hasan
    • Lazaro Calderin
    • Pierre A. Deymier
    ResearchOpen Access
    Communications Physics
    Volume: 2, P: 1-5
  • While Bell inequalities have been violated several times—mostly in photonic systems—their violations within particle physics experiments are less explored. Here, the BESIII Collaboration showcases Bell-violating nonlocal correlations between entangled hyperon pairs.

    • M. Ablikim
    • M. N. Achasov
    • J. Zu
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-9
  • Astrophysicist who predicted that galaxies have black holes at their hearts.

    • Roger Davies
    Comments & Opinion
    Nature
    Volume: 555, P: 166
  • A deterministic violation of the Bell inequality is reported between two superconducting circuits, providing a necessary test for establishing strong enough quantum entanglement to achieve secure quantum communications.

    • Y. P. Zhong
    • H.-S. Chang
    • A. N. Cleland
    Research
    Nature Physics
    Volume: 15, P: 741-744
  • Practical implementations of quantum communication need to securely deliver information over long distances without line-of-sight. Towards this goal, Cuevas et al.use an actively stabilized interferometer to close the geometry loophole for a Bell inequality violation over 1 km of optical fibre.

    • A. Cuevas
    • G. Carvacho
    • G.B. Xavier
    ResearchOpen Access
    Nature Communications
    Volume: 4, P: 1-6
  • The triangle causal structure represents a departure from the usual Bell scenario, as it should allow to violate classical predictions without the need for external inputs setting the measurement bases. Here the authors realise this scenario using a photonic setup with three independent photon sources.

    • Emanuele Polino
    • Davide Poderini
    • Fabio Sciarrino
    ResearchOpen Access
    Nature Communications
    Volume: 14, P: 1-13
  • Chronic Kidney Disease affects 1 in 10 people worldwide with prevalence continuing to rise, thus there is a need to identify novel biomarkers that can add value to existing clinical and biochemical risk predictors. Here the authors identify miR190a-5p as potential indicator of kidney health and disease progression in patients with chronic kidney disease.

    • David P. Baird
    • Jinnan Zang
    • Laura Denby
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-15
  • Diabetic ketoacidosis (DKA) is the leading cause of death, morbidity and excessive health-care utilization and costs in patients with type 1 diabetes mellitus; DKA is common at initial diagnosis, but uncommon thereafter. A new study has determined the risk factors for multiple DKA episodes and their relationship to the risk of death.

    • Mark A. Sperling
    News & Views
    Nature Reviews Endocrinology
    Volume: 12, P: 562-564
  • Polyamides (PAs) or nylons are types of plastics with wide applications, but due to their accumulation in the environment, strategies for their deconstruction are of interest. Here, the authors screen 40 potential nylon-hydrolyzing enzymes (nylonases) using a mass spectrometry-based approach and identify a thermostabilized N-terminal nucleophile hydrolase as the most promising for further development, as well as crucial targets for progressing PA6 enzymatic depolymerization.

    • Elizabeth L. Bell
    • Gloria Rosetto
    • Gregg T. Beckham
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-17
    • T. A. A. BROADBENT
    Comments & Opinion
    Nature
    Volume: 189, P: 443
  • The treatment of Bell palsy remains a matter of debate. A recent update of the American Academy of Neurology practice parameter concluded that corticosteroids should be offered to increase the probability of facial nerve recovery. The benefits of antiviral treatment, however, have not been established.

    • Thomas Berg
    • Lars Jonsson
    News & Views
    Nature Reviews Neurology
    Volume: 9, P: 128-129
  • According to Bell's theorem, any theory that is based on the joint assumption of realism and locality is at variance with certain quantum predictions. Here, theory and experiment agree that a class of such non-local realistic theories is incompatible with experimentally observable quantum correlations, suggesting that giving up the concept of locality is not sufficient to be consistent with quantum experiments, unless certain intuitive features of realism are abandoned.

    • Simon Gröblacher
    • Tomasz Paterek
    • Anton Zeilinger
    Research
    Nature
    Volume: 446, P: 871-875
  • SARS-CoV-2 vaccines containing Omicron subvariant XBB 1.5 were introduced in the United States in 2023. Here, the authors assess the safety of these vaccines by analysing the occurrence of 15 adverse events of special interest following vaccine receipt using electronic health record data.

    • Yuanyi Pan
    • Yun Han
    • Christopher G. Chute
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-10
  • Recent advancements have enabled quantum control and measurement of mechanical resonators. Here the authors demonstrate quantum entanglement between two mechanical resonators on separate substrates by sharing one and two quanta of energy, followed by quantum measurement of these entangled states.

    • Ming-Han Chou
    • Hong Qiao
    • Andrew N. Cleland
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-7
  • Researchers demonstrate a reconfigurable integrated quantum photonic circuit. The device comprises a two-qubit entangling gate, several Hadamard-like gates and eight variable phase shifters. The set-up is used to generate entangled states, violate a Bell-type inequality with a continuum of partially entangled states and demonstrate the generation of arbitrary one-qubit mixed states.

    • P. J. Shadbolt
    • M. R. Verde
    • J. L. O'Brien
    Research
    Nature Photonics
    Volume: 6, P: 45-49
  • While most quantum optical techniques reveal either the wave or particle nature of light, weak-field homodyne detection combines wave- and particle-like descriptions. Here, Donati et al.employ this hybrid detection scheme to study the coherence between photon number states across two-mode entangled states.

    • Gaia Donati
    • Tim J. Bartley
    • Ian A. Walmsley
    Research
    Nature Communications
    Volume: 5, P: 1-6
  • Beck et al. develop a model where striosomes create a flexible “decision-space” that adapts to environmental context and internal state. It explains how we make choices and why decision-making varies between people, and in neuropsychiatric disorders.

    • Dirk W. Beck
    • Cory N. Heaton
    • Alexander Friedman
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-30