Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 564 results
Advanced filters: Author: Benjamin Vincent Clear advanced filters
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • TCR-TRANSLATE, a deep learning framework adapting machine translation to immune design, demonstrates the successful generation of a functional T cell receptor sequence for a cancer epitope from the target sequence alone.

    • Dhuvarakesh Karthikeyan
    • Sarah N. Bennett
    • Alex Rubinsteyn
    ResearchOpen Access
    Nature Machine Intelligence
    Volume: 7, P: 1494-1509
  • A global network of researchers was formed to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity; this paper reports 13 genome-wide significant loci and potentially actionable mechanisms in response to infection.

    • Mari E. K. Niemi
    • Juha Karjalainen
    • Chloe Donohue
    ResearchOpen Access
    Nature
    Volume: 600, P: 472-477
  • The US COVID-19 Scenario Modeling Hub produced medium to long term projections based on different epidemic scenarios. In this study, the authors evaluate 14 rounds of projections by comparing them to the epidemic trajectories that occurred, and discuss lessons learned for future similar projects.

    • Emily Howerton
    • Lucie Contamin
    • Justin Lessler
    ResearchOpen Access
    Nature Communications
    Volume: 14, P: 1-15
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • An analysis of 24,202 critical cases of COVID-19 identifies potentially druggable targets in inflammatory signalling (JAK1), monocyte–macrophage activation and endothelial permeability (PDE4A), immunometabolism (SLC2A5 and AK5), and host factors required for viral entry and replication (TMPRSS2 and RAB2A).

    • Erola Pairo-Castineira
    • Konrad Rawlik
    • J. Kenneth Baillie
    ResearchOpen Access
    Nature
    Volume: 617, P: 764-768
  • This analysis of whole-genome sequencing data from 421 multiple myeloma samples elucidates the timing of key genomic events and shows associations between the timing of 1q gain and clinical outcome.

    • Francesco Maura
    • Marcella Kaddoura
    • Niels Weinhold
    Research
    Nature Genetics
    Volume: 57, P: 2203-2214
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • The blood-brain barrier (BBB) regulates the extracellular composition of the central nervous system (CNS), but it is not known whether its properties differ across CNS regions. Here, the authors show in mice that the BBB exhibits regional specializations, and that such specializations can be important for the function of specific neural circuits.

    • Marie Blanchette
    • Kaja Bajc
    • Richard Daneman
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-14
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • Some cancer patients first present with metastases where the location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

    • Wei Jiao
    • Gurnit Atwal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101
  • In this study the authors consider the structural variants (SVs) present within cancer cases of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. They report hundreds of genes, including known cancer-associated genes for which the nearby presence of a SV breakpoint is associated with altered expression.

    • Yiqun Zhang
    • Fengju Chen
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14
  • Small intestinal neuroendocrine tumours (siNETs) are rare bowel tumors generally considered to be a single entity. Here, the authors perform a multiomics analysis of siNETs and reveal four distinct molecular groups with clinical relevance, including groups linked to differentiation patterns, immunity, and mesenchymal properties.

    • Céline Patte
    • Roxane M. Pommier
    • Benjamin Gibert
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-15
  • Analysis of data from multiple instruments reveals a giant exoplanet in orbit around the 0.2-solar-mass star TOI-6894. The existence of this exoplanetary system challenges assumptions about planet formation and it is an excellent target for atmospheric characterization.

    • Edward M. Bryant
    • Andrés Jordán
    • Sebastián Zúñiga-Fernández
    ResearchOpen Access
    Nature Astronomy
    Volume: 9, P: 1031-1044
  • Loiasis poses significant treatment challenges, particularly in regions where onchocerciasis is hypoendemic and coendemic. Here, the authors demonstrate that a 5-day levamisole regimen is safe and more effective than shorter treatments in reducing Loa loa microfilarial densities, offering an alternative approach for managing loiasis in affected areas.

    • Cédric B. Chesnais
    • Marlhand C. Hemilembolo
    • Jérémy T. Campillo
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-11
  • In the phase 2 study LCCC1520 (NCT02690558), clinical activity of pembrolizumab in combination with gemcitabine and cisplatin as neoadjuvant therapy in patients with muscle-invasive bladder cancer has been reported. Here the authors present molecular and immune cellular features associated with response to neoadjuvant chemo-immunotherapy.

    • Wolfgang Beckabir
    • Mi Zhou
    • Benjamin G. Vincent
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-14
  • Electrical excitability in neuroendocrine SCLC cells promotes tumour progression through action potential firing, increasing ATP demand and oxidative phosphorylation dependency, whereas non-neuroendocrine cells provide metabolic support, driving a tumour-autonomous cycle that enhances tumorigenesis and metastasis.

    • Paola Peinado
    • Marco Stazi
    • Leanne Li
    ResearchOpen Access
    Nature
    Volume: 639, P: 765-775
  • Alterations of therapeutic pressures have been shown to affect clonal evolution of resistance. Here, the authors conducted a single arm, phase 2 trial consisting of alternating osimertinib and gefitinib in non-small cell lung cancer, and found ctDNA dynamics were predictive of response.

    • Lavinia Tan
    • Chris Brown
    • Benjamin J. Solomon
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-13
  • A20, encoded by TNFAIP3, is a negative-feedback inhibitor of NF-κB. Grey and colleagues identify natural human variants of TNFAIP3, which lower A20 activity and increase autoinflammatory responses. These alleles were inherited by descendants of Denisovans who crossed the Wallace Line to inhabit Oceania.

    • Nathan W. Zammit
    • Owen M. Siggs
    • Shane T. Grey
    Research
    Nature Immunology
    Volume: 20, P: 1299-1310
  • Whole-genome sequencing, transcriptome-wide association and fine-mapping analyses in over 7,000 individuals with critical COVID-19 are used to identify 16 independent variants that are associated with severe illness in COVID-19.

    • Athanasios Kousathanas
    • Erola Pairo-Castineira
    • J. Kenneth Baillie
    ResearchOpen Access
    Nature
    Volume: 607, P: 97-103
  • COVID-19 can be associated with neurological complications. Here the authors show that markers of brain injury, but not immune markers, are elevated in the blood of patients with COVID-19 both early and months after SARS-CoV-2 infection, particularly in those with brain dysfunction or neurological diagnoses.

    • Benedict D. Michael
    • Cordelia Dunai
    • David K. Menon
    ResearchOpen Access
    Nature Communications
    Volume: 14, P: 1-15
  • Two-dimensional synthetic polymers can be produced through solid-state topochemical polymerization, but achieving this through a single-crystal-to-single-crystal transformation has not yet been demonstrated. Now, a fluorinated Y-shaped monomer has been preorganized in a lamellar crystal, which goes through two successive single-crystal-to-single-crystal phototransformations to give a 2D polymer; single-crystal X-ray diffraction has been used to elucidate its structure.

    • Patrick Kissel
    • Daniel J. Murray
    • Benjamin T. King
    Research
    Nature Chemistry
    Volume: 6, P: 774-778