Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 512 results
Advanced filters: Author: Julia Yang Clear advanced filters
  • Adoptive regulatory T cell (Treg) therapy holds promise for the treatment of a range of immunopathological conditions. Here the authors explore the HLA engineering of allogenic Treg products that avoid T cell and NK cell attack and maintain immunomodulatory function in a human skin-xenograft model.

    • Oliver McCallion
    • Weijie Du
    • Fadi Issa
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-14
  • The International Brain Laboratory presents a brain-wide electrophysiological map obtained from pooling data from 12 laboratories that performed the same standardized perceptual decision-making task in mice.

    • Leenoy Meshulam
    • Dora Angelaki
    • Ilana B. Witten
    ResearchOpen Access
    Nature
    Volume: 645, P: 177-191
  • Trained and validated on multimodal data from 14.5 million images from multicountry datasets, a foundation model is shown to increase diagnostic and referral accuracy of clinicians when used as an assistant in a trial involving 16 ophthalmologists and 668 patients.

    • Yilan Wu
    • Bo Qian
    • Bin Sheng
    Research
    Nature Medicine
    P: 1-10
  • TCR-T cells are T cells engineered to express a specific T cell receptor. Here the authors present a TCR-T cell that targets CTNNB1-S37F, corresponding to a shared cancer driver mutation. This immunotherapy killed solid tumors when applied to a patient-derived xenograft model in mice.

    • Maria Stadheim Eggebø
    • Julia Heinzelbecker
    • Johanna Olweus
    ResearchOpen Access
    Nature Immunology
    Volume: 26, P: 1726-1736
  • Together with an accompanying paper presenting a transcriptomic atlas of the mouse lemur, interrogation of the atlas provides a rich body of data to support the use of the organism as a model for primate biology and health.

    • Camille Ezran
    • Shixuan Liu
    • Mark A. Krasnow
    ResearchOpen Access
    Nature
    Volume: 644, P: 185-196
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • A large genome-wide association study of more than 5 million individuals reveals that 12,111 single-nucleotide polymorphisms account for nearly all the heritability of height attributable to common genetic variants.

    • Loïc Yengo
    • Sailaja Vedantam
    • Joel N. Hirschhorn
    ResearchOpen Access
    Nature
    Volume: 610, P: 704-712
  • An analysis of 24,202 critical cases of COVID-19 identifies potentially druggable targets in inflammatory signalling (JAK1), monocyte–macrophage activation and endothelial permeability (PDE4A), immunometabolism (SLC2A5 and AK5), and host factors required for viral entry and replication (TMPRSS2 and RAB2A).

    • Erola Pairo-Castineira
    • Konrad Rawlik
    • J. Kenneth Baillie
    ResearchOpen Access
    Nature
    Volume: 617, P: 764-768
  • Amyloid fibrils can adopt a range of distinct conformations, yet it is challenging to rapidly discriminate between these polymorphs. Now methods have been developed to screen large, diverse libraries of turn-on fluorescent dyes to rapidly identify probes that recognize fibril subsets.

    • Emma C. Carroll
    • Hyunjun Yang
    • Jason E. Gestwicki
    ResearchOpen Access
    Nature Chemistry
    Volume: 17, P: 1565-1575
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • In this study the authors consider the structural variants (SVs) present within cancer cases of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. They report hundreds of genes, including known cancer-associated genes for which the nearby presence of a SV breakpoint is associated with altered expression.

    • Yiqun Zhang
    • Fengju Chen
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14
  • Together with a companion paper, the generation of a transcriptomic atlas for the mouse lemur and analyses of example cell types establish this animal as a molecularly tractable primate model organism.

    • Antoine de Morree
    • Iwijn De Vlaminck
    • Mark A. Krasnow
    ResearchOpen Access
    Nature
    Volume: 644, P: 173-184
  • A global network of researchers was formed to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity; this paper reports 13 genome-wide significant loci and potentially actionable mechanisms in response to infection.

    • Mari E. K. Niemi
    • Juha Karjalainen
    • Chloe Donohue
    ResearchOpen Access
    Nature
    Volume: 600, P: 472-477
  • A genome-wide association study including over 76,000 individuals with schizophrenia and over 243,000 control individuals identifies common variant associations at 287 genomic loci, and further fine-mapping analyses highlight the importance of genes involved in synaptic processes.

    • Vassily Trubetskoy
    • Antonio F. Pardiñas
    • Jim van Os
    Research
    Nature
    Volume: 604, P: 502-508
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Castleman disease encompasses a group of disorders characterised by abnormal lymph node morphology. Here the authors use single cell and spatial transcriptomics to assess the stromal, immune and interaction architecture of different subtypes of Castleman disease, indicating potential ligand-receptor interactions between immune cells.

    • David Smith
    • Anna Eichinger
    • Vinodh Pillai
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-14
  • Using data from a single time point, passenger-approximated clonal expansion rate (PACER) estimates the fitness of common driver mutations that lead to clonal haematopoiesis and identifies TCL1A activation as a mediator of clonal expansion.

    • Joshua S. Weinstock
    • Jayakrishnan Gopakumar
    • Siddhartha Jaiswal
    Research
    Nature
    Volume: 616, P: 755-763
  • Geospatial estimates of the prevalence of anemia in women of reproductive age across 82 low-income and middle-income countries reveals considerable heterogeneity and inequality at national and subnational levels, with few countries on track to meet the WHO Global Nutrition Targets by 2030.

    • Damaris Kinyoki
    • Aaron E. Osgood-Zimmerman
    • Simon I. Hay
    ResearchOpen Access
    Nature Medicine
    Volume: 27, P: 1761-1782
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • An analysis of data from 522 population-based studies encompassing 82 global regions and spanning more than a century (1920–2024) shows spatiotemporal transitions across epidemiologic stages 1 to 3 of inflammatory bowel disease, and models stage 4 progression.

    • Lindsay Hracs
    • Joseph W. Windsor
    • Gilaad G. Kaplan
    ResearchOpen Access
    Nature
    Volume: 642, P: 458-466
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24
  • This Review discusses multiomic approaches for the characterization and biological understanding of cellular senescence, including detailed case studies on skeletal muscle and adipose tissue that highlight current outstanding issues in the field.

    • Sheng Li
    • Paula A. Agudelo Garcia
    • Rong Fan
    Reviews
    Nature Genetics
    Volume: 57, P: 2381-2394
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Some cancer patients first present with metastases where the location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

    • Wei Jiao
    • Gurnit Atwal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • Human-driven forest fragmentation could have major impacts on ecosystem functioning. This global analysis shows that the relationship between fragmentation and vegetation resilience in forests may differ depending on bioclimatic region and local environmental conditions.

    • Yongxian Su
    • Chaoqun Zhang
    • Weiqi Zhou
    Research
    Nature Ecology & Evolution
    Volume: 9, P: 1670-1684
  • Foundation models enable rapid adaptation to various downstream tasks and are hence about to become a new paradigm in biomedicine. Here, the authors develop LLaVA-Rad, a small AI that bests larger models in chest X-ray interpretation, and CheXprompt, a radiologist-aligned factuality metric, to enable scalable, privacy-preserving image analysis.

    • Juan Manuel Zambrano Chaves
    • Shih-Cheng Huang
    • Hoifung Poon
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-15
  • A genome-wide association meta-analysis study of blood lipid levels in roughly 1.6 million individuals demonstrates the gain of power attained when diverse ancestries are included to improve fine-mapping and polygenic score generation, with gains in locus discovery related to sample size.

    • Sarah E. Graham
    • Shoa L. Clarke
    • Cristen J. Willer
    Research
    Nature
    Volume: 600, P: 675-679
  • Estimates from the Global Dietary Database indicated that 2.2 million new type 2 diabetes and 1.2 million new cardiovascular disease cases were attributable to sugar-sweetened beverages worldwide in 2020, with the highest burdens in sub-Saharan Africa, Latin America and the Caribbean.

    • Laura Lara-Castor
    • Meghan O’Hearn
    • Rubina Hakeem
    ResearchOpen Access
    Nature Medicine
    Volume: 31, P: 552-564