Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 1640 results
Advanced filters: Author: M Bloch Clear advanced filters
  • Bloch oscillations (BO) are intrinsically related to the geometry and topological properties of the underlying band structure. Here, Di Liberto et al. predict a unique topological effect manifested in the BOs of higher-order topological insulators through the interplay of non-Abelian Berry curvature and quantized Wilson loops.

    • M. Di Liberto
    • N. Goldman
    • G. Palumbo
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-9
  • Bloch wavefunctions of two types of hole in gallium arsenide are reconstructed by measuring the polarization of light emitted by collisions of electrons and holes accelerated by a terahertz laser.

    • J. B. Costello
    • S. D. O’Hara
    • M. S. Sherwin
    Research
    Nature
    Volume: 599, P: 57-61
  • The build-up and dephasing of Floquet-–Bloch bands is visualized in both subcycle band-structure videography and quantum theory, revealing the interplay of strong-field intraband and interband excitations in a non-equilibrium Floquet picture.

    • S. Ito
    • M. Schüler
    • R. Huber
    Research
    Nature
    Volume: 616, P: 696-701
  • By forcing electron–hole pairs onto closed trajectories attosecond clocking of delocalized Bloch electrons is achieved, enabling greater understanding of unexpected phase transitions and quantum-dynamic phenomena.

    • J. Freudenstein
    • M. Borsch
    • R. Huber
    Research
    Nature
    Volume: 610, P: 290-295
  • Terahertz waveforms with peak fields of 72 MV cm−1 and a central frequency of 30 THz drive interband polarization in bulk GaSe off-resonantly and accelerate excited electron–hole pairs, inducing dynamical Bloch oscillations. This results in the emission of phase-stable, high-harmonic transients over the whole frequency range of 0.1–675 THz.

    • O. Schubert
    • M. Hohenleutner
    • R. Huber
    Research
    Nature Photonics
    Volume: 8, P: 119-123
  • The nature of the dominant pairing mechanism in some two-dimensional transition metal dichalcogenides is still debated. Here, the authors predict that the Kohn-Luttinger mechanism induces chiral p-wave superconductivity in monolayer NbSe2.

    • Julian Siegl
    • Anton Bleibaum
    • Milena Grifoni
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-10
  • Composite fermions can be tuned to very low effective density in a clean two-dimensional electron gas, which allows the formation of a Bloch ferromagnet.

    • Md Shafayat Hossain
    • Tongzhou Zhao
    • M. Shayegan
    Research
    Nature Physics
    Volume: 17, P: 48-52
  • The interaction of waves with periodic structures is a feature central to many areas of physics from quantum mechanics to acoustics. Here, the authors numerically and experimentally demonstrate the presence of Rayleigh-Bloch waves in the regime above the first cut-off using acoustic gratings.

    • G. J. Chaplain
    • S. C. Hawkins
    • T. A. Starkey
    ResearchOpen Access
    Communications Physics
    Volume: 8, P: 1-9
  • By exploiting an optical thermodynamic framework, researchers demonstrate universal routing of light. Specifically, light launched into any input port of a nonlinear array is universally channelled into a tightly localized ground state. The principles of optical thermodynamics demonstrated may enable new optical functionalities.

    • Hediyeh M. Dinani
    • Georgios G. Pyrialakos
    • Mercedeh Khajavikhan
    Research
    Nature Photonics
    Volume: 19, P: 1116-1121
  • Polar skyrmions are nanoscale topological structures of electric polarizations. Their collective modes, dubbed as “skyrons”, are discovered by the terahertz-field-excitation, femtosecond x-ray diffraction measurements and advanced modeling.

    • Huaiyu Hugo Wang
    • Vladimir A. Stoica
    • Haidan Wen
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-10
  • Theoretical models capable of accurately capturing the behaviour of plasmonic, Bloch surfaces waves are vital for the interpretation of experimental results. Here, the authors demonstrate the importance of extrinsic factors in determining the Goos-Hänchen shift in a generalised model of the propagation length.

    • Fadi I. Baida
    • Maria-Pilar Bernal
    ResearchOpen Access
    Communications Physics
    Volume: 3, P: 1-9
  • The phase of a collection of spins is measured with a sensitivity ten times beyond the limit set by the quantum noise of an unentangled ensemble of 87Rb atoms. A cavity-enhanced probe of an optical cycling transition is employed to mitigate back-action associated with state-changing transitions induced by the probe.

    • J. G. Bohnet
    • K. C. Cox
    • J. K. Thompson
    Research
    Nature Photonics
    Volume: 8, P: 731-736
  • High-order harmonic generation in solids could develop into a compact, coherent, short-wavelength source. This study shows that two-colour noncollinear wave mixing in silica significantly enhances HHG efficiency over single-color methods, offering a novel pathway for advancing all-solid XUV sources.

    • Sylvianne D. C. Roscam Abbing
    • Nataliia Kuzkova
    • Peter M. Kraus
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-7
  • The ability to control domain wall motion in ultrathin magnetic wires with an applied current could prove useful in future spintronic devices. Tetienne et al.now directly observe the different domain-wall structures in various magnetic material systems using a scanning nanomagnetometer.

    • J.-P. Tetienne
    • T. Hingant
    • V. Jacques
    Research
    Nature Communications
    Volume: 6, P: 1-6
  • There is interest in encoding of information in complex spin structures present in magnetic systems, such as domain walls. Here, Léveillé et al study the ultrafast dynamics of chiral domain walls, and show the emergence of a transient spin chiral texture at the domain wall.

    • Cyril Léveillé
    • Erick Burgos-Parra
    • Nicolas Jaouen
    ResearchOpen Access
    Nature Communications
    Volume: 13, P: 1-6
  • Ramsey interferometry is widely used in quantum sensing for precise qubit frequency measurements, but its sensitivity is limited by decoherence. Hecht et al. report a new protocol for detecting qubit frequency shifts in a decohering system which has enhanced sensitivity and is applicable to existing technologies.

    • M. O. Hecht
    • Kumar Saurav
    • Eli M. Levenson-Falk
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-8
  • Magic state distillation is achieved with logical qubits on a neutral-atom quantum computer using a dynamically reconfigurable architecture for parallel quantum operations.

    • Pedro Sales Rodriguez
    • John M. Robinson
    • Sergio H. Cantú
    Research
    Nature
    Volume: 645, P: 620-625
  • The evolution of a quantum state undergoing radiative decay depends on how the emission is detected. Here, the authors demonstrate how continuous field detection, as opposed to the more common detection of energy quanta, allows control of the back-action on the emitter’s state.

    • M. Naghiloo
    • N. Foroozani
    • K. W. Murch
    ResearchOpen Access
    Nature Communications
    Volume: 7, P: 1-7
  • The authors report resonant soft x-ray scattering and polarimetry measurements on epitaxial thin films of La3Ni2O7. They find a diagonal bicollinear double spin stripe order, with no evidence of charge modulation.

    • Naman K. Gupta
    • Rantong Gong
    • David G. Hawthorn
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-9
  • Although magnetic tomography has been used in the past to determine the 3D magnetization of materials its application to thin films remains challenging. Here the authors reconstruct the magnetization of a thin film, enabling the measurement of topological charges of magnetic singularities.

    • A. Hierro-Rodriguez
    • C. Quirós
    • S. Ferrer
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-8
  • Mobile impurities can be useful probes of quantum states. Here, the authors theoretically identify polarons formed on the edge of topological insulating states, termed chiral polarons, that can be used to probe topological matter.

    • Amit Vashisht
    • Ivan Amelio
    • Nathan Goldman
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-18
  • Strong lasing effects similar to those in the optical regime can occur at 1.5–2.1 Å wavelengths during high-intensity XFEL-driven Kα1 lasing of copper and manganese.

    • Thomas M. Linker
    • Aliaksei Halavanau
    • Uwe Bergmann
    Research
    Nature
    Volume: 642, P: 934-940
  • Experiments that directly probe the quantum geometric tensor in solids have not been reported. Now, the quantum metric and spin Berry curvature—dual components of the quantum geometric tensor—have been simultaneously measured in reciprocal space.

    • Mingu Kang
    • Sunje Kim
    • Riccardo Comin
    Research
    Nature Physics
    Volume: 21, P: 110-117
  • So-called photonic-crystal-excitonic-lattice polaritons can be observed by coupling excitons and Bloch waves in a periodic arrangement of GaAs/AlGaAs quantum wells. The effect can be tuned by using an electric field. These hybrid states may allow slow-light-enhanced nonlinear effects and enable observation of macroscopic coherence phenomena in solid-state systems.

    • David Goldberg
    • Lev I. Deych
    • Serge Oktyabrsky
    Research
    Nature Photonics
    Volume: 3, P: 662-666
  • Trapped ions are promising for electrometry but limited by their weak intrinsic spin coupling to electric fields. Now it is shown that using a magnetic field gradient enhances sensitivity and enables precise measurements across subhertz to kilohertz frequencies.

    • F. Bonus
    • C. Knapp
    • W. K. Hensinger
    ResearchOpen Access
    Nature Physics
    Volume: 21, P: 1189-1195
  • Broken symmetry at the interface with a heavy metal gives rise to a chiral exchange interaction in ferromagnetic thin films, which may be used to control magnetic domain walls. Here, the authors demonstrate how this effect enforces topologically stable homochiral domain walls in a Pt/Co/AlOxtrilayer.

    • M. J. Benitez
    • A. Hrabec
    • S. McVitie
    ResearchOpen Access
    Nature Communications
    Volume: 6, P: 1-7
  • The spin texture of a magnetic system can host a variety of topological spin textures, the most famous of these being skyrmions. Here, Volkov et al demonstrate higher order vorticity in magnetic wireframe nanostructures and introduce a general protocol for the creation of arbitrary numbers of vortices and antivortices in such wireframe structures.

    • Oleksii M. Volkov
    • Oleksandr V. Pylypovskyi
    • Denys Makarov
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-13
  • A quantum simulator can follow the evolution of a prescribed model, whose behaviour may be difficult to determine. Here, the emergence of magnetism is simulated by implementing a quantum Ising model, providing a benchmark for simulations in larger systems.

    • R. Islam
    • E.E. Edwards
    • C. Monroe
    Research
    Nature Communications
    Volume: 2, P: 1-6
  • Decoherence is anathema to quantum systems, as it reduces their performance and stability. Shulman et al.show that real-time Hamiltonian parameter estimation can significantly increase the coherence time of a qubit by enabling continuous adjustment of its control parameters.

    • M. D. Shulman
    • S. P. Harvey
    • A. Yacoby
    ResearchOpen Access
    Nature Communications
    Volume: 5, P: 1-6
  • Phosphocreatine plays a vital role in cellular energetic homeostasis, but there are no routine diagnostic tests to noninvasively map the distribution with clinically relevant spatial resolution. Here, the authors develop and validate a noninvasive approach for quantifying and imaging phosphocreatine, without contrast agents, on widely available clinical MRI scanners with artificial neural networks.

    • Lin Chen
    • Michael Schär
    • Jiadi Xu
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • In strongly correlated systems, how magnetic excitations are renormalized by charge carriers remains an open question. An experiment now reports the observation of magnon-polarons—magnons dressed by doped holes—in a Fermi–Hubbard quantum simulator.

    • Max L. Prichard
    • Zengli Ba
    • Waseem S. Bakr
    Research
    Nature Physics
    Volume: 21, P: 1548-1554
  • Quantum communication schemes rely on cryptographically secure quantum resources to distribute private information. Here, the authors show that graph states—nonlocal states based on networks of qubits—can be exploited to implement quantum secret sharing of quantum and classical information.

    • B. A. Bell
    • D. Markham
    • M. S. Tame
    Research
    Nature Communications
    Volume: 5, P: 1-12
  • Isolated many-body quantum systems do not thermalize with an external environment but in most cases the internal dynamics leads to the emergence of an effective thermal equilibrium for local degrees of freedom. Here the authors study this behaviour with a realization of a long-range spin model.

    • S. Lepoutre
    • J. Schachenmayer
    • B. Laburthe-Tolra
    ResearchOpen Access
    Nature Communications
    Volume: 10, P: 1-9
  • Spin–orbit coupling is implemented in an optical lattice clock using a narrow optical transition in fermionic 87Sr atoms, thus mitigating the heating problems of previous experiments with alkali atoms and offering new prospects for future investigations.

    • S. Kolkowitz
    • S. L. Bromley
    • J. Ye
    Research
    Nature
    Volume: 542, P: 66-70