Abstract
Quantum effects in chemical reactions are most pronounced at ultracold temperatures, where only a few partial waves contribute. While interference among many partial waves is theoretically expected to persist at higher temperatures, direct evidence for such quantum effects in reactive processes has been lacking. Here, we report signatures of quantum interference suppressing a chemical reaction in the multi-partial-wave regime: resonant charge exchange between a single 87Rb+ ion and its parent atom 87Rb. Using quantum-logic detection on a single atom-ion pair and a calibrated in-situ measurement of Langevin collision probabilities, we benchmark the thermally averaged reaction rate against both classical and quantum predictions. We find that the reaction rate is suppressed by over an order of magnitude relative to the classical expectation, despite occurring in the millikelvin temperature regime (more than three orders of magnitude above the s-wave threshold), where more than a dozen partial waves contribute. These results suggest quantum interference as a key mechanism in chemical reactivity beyond the ultracold limit and offer a platform for probing coherent quantum effects in atom-ion reactions where ab initio methods remain intractable.
Similar content being viewed by others
Data availability
The data displayed in Figures 2, 6, 7 are publicly accessible at this repository96.
References
Paliwal, P. et al. Determining the nature of quantum resonances by probing elastic and reactive scattering in cold collisions. Nat. Chem. 13, 94 (2021).
Köhler, T., Góral, K. & Julienne, P. S. Production of cold molecules via magnetically tunable feshbach resonances. Rev. Mod. Phys. 78, 1311 (2006).
Chin, C., Grimm, R., Julienne, P. & Tiesinga, E. Feshbach resonances in ultracold gases. Rev. Mod. Phys. 82, 1225 (2010).
Haze, S. et al. Controlling few-body reaction pathways using a Feshbach resonance. Nat. Phys. 21, 228 (2025).
Margulis, B. et al. Tomography of Feshbach resonance states. Science 380, 77 (2023).
Margulis, B. et al. Observation of the p-wave shape resonance in atom-molecule collisions. Phys. Rev. Res. 4, 043042 (2022).
Besemer, M. et al. Glory scattering in deeply inelastic molecular collisions. Nat. Chem. 14, 664 (2022).
Bloch, I., Dalibard, J. & Nascimbene, S. Quantum simulations with ultracold quantum gases. Nat. Phys. 8, 267 (2012).
Schäfer, F., Fukuhara, T., Sugawa, S., Takasu, Y. & Takahashi, Y. Tools for quantum simulation with ultracold atoms in optical lattices. Nat. Rev. Phys. 2, 411 (2020).
Jachymski, K. & Negretti, A. Quantum simulation of extended polaron models using compound atom-ion systems. Phys. Rev. Res. 2, 033326 (2020).
Ospelkaus, S. et al. Quantum-state controlled chemical reactions of ultracold potassium-rubidium molecules. Science 327, 853 (2010).
Gross, C., Zibold, T., Nicklas, E., Esteve, J. & Oberthaler, M. K. Nonlinear atom interferometer surpasses classical precision limit. Nature 464, 1165 (2010).
Safronova, M. et al. Search for new physics with atoms and molecules. Rev. Mod. Phys. 90, 025008 (2018).
Jones, K. M., Tiesinga, E., Lett, P. D. & Julienne, P. S. Ultracold photoassociation spectroscopy: Long-range molecules and atomic scattering. Rev. Mod. Phys. 78, 483 (2006).
Liu, Y. et al. Precision test of statistical dynamics with state-to-state ultracold chemistry. Nature 593, 379 (2021).
Schmidt, F. et al. Tailored single-atom collisions at ultralow energies. Phys. Rev. Lett. 122, 013401 (2019).
Weckesser, P. et al. Observation of Feshbach resonances between a single ion and ultracold atoms. Nature 600, 429 (2021).
Feldker, T. et al. Buffer gas cooling of a trapped ion to the quantum regime. Nat. Phys. 16, 413 (2020).
Jachymski, K., Krych, M., Julienne, P. S. & Idziaszek, Z. Quantum-defect model of a reactive collision at finite temperature. Phys. Rev. A 90, 042705 (2014).
Liu, Y.-X. et al. Quantum interference in atom-exchange reactions. Science 384, 1117 (2024).
Luke, J., Zhu, L., Liu, Y.-X. & Ni, K.-K. Reaction interferometry with ultracold molecules. Faraday Discuss. 251, 63 (2024).
da Silva Jr, H., Kendrick, B., Li, H., Kotochigova, S. & Balakrishnan, N. Nonadiabatically driven quantum interference effects in the ultracold k+ krb → rb+ k2 chemical reaction. J. Phys. Chem. Lett. 16, 6171 (2025).
Kondov, S. et al. Crossover from the ultracold to the quasiclassical regime in state-selected photodissociation. Phys. Rev. Lett. 121, 143401 (2018).
Majewska, I. et al. Experimental and theoretical investigation of the crossover from the ultracold to the quasiclassical regime of photodissociation. Phys. Rev. A 98, 043404 (2018).
Tomza, M. et al. Cold hybrid ion-atom systems. Rev. Mod. Phys. 91, 035001 (2019).
Côté, R. et al. Ultracold Hybrid Atom–ion Systems, in Advances In Atomic, Molecular, And Optical Physics, 65 (Elsevier, 2016).
Cetina, M., Grier, A. T. & Vuletić, V. Micromotion-induced limit to atom-ion sympathetic cooling in paul traps. Phys. Rev. Lett. 109, 253201 (2012).
Pinkas, M. et al. Effect of ion-trap parameters on energy distributions of ultra-cold atom–ion mixtures. N. J. Phys. 22, 013047 (2020).
Lous, R. S. & Gerritsma, R. Ultracold ion-atom experiments: cooling, chemistry, and quantum effects. Adv. At., Mol., Opt.Phys. 71, 65 (2022).
Grier, A. T., Cetina, M., Oručević, F. & Vuletić, V. Observation of cold collisions between trapped ions and trapped atoms. Phys. Rev. Lett. 102, 223201 (2009).
Schmidt, J., Weckesser, P., Thielemann, F., Schaetz, T. & Karpa, L. Optical traps for sympathetic cooling of ions with ultracold neutral atoms. Phys. Rev. Lett. 124, 053402 (2020).
Ratschbacher, L., Zipkes, C., Sias, C. & Köhl, M. Controlling chemical reactions of a single particle. Nat. Phys. 8, 649 (2012).
Härter, A. & Hecker Denschlag, J. Cold atom–ion experiments in hybrid traps. Contemp. Phys. 55, 33 (2014).
Hall, F. H., Aymar, M., Bouloufa-Maafa, N., Dulieu, O. & Willitsch, S. Light-assisted ion-neutral reactive processes in the cold regime: Radiative molecule formation versus charge exchange. Phys. Rev. Lett. 107, 243202 (2011).
Sikorsky, T., Meir, Z., Ben-Shlomi, R., Akerman, N. & Ozeri, R. Spin-controlled atom–ion chemistry. Nat. Commun. 9, 1 (2018).
Mohammadi, A. et al. Life and death of a cold barb+ molecule inside an ultracold cloud of rb atoms. Phys. Rev. Res. 3, 013196 (2021).
Rellergert, W. G. et al. Measurement of a large chemical reaction rate between ultracold closed-shell ca 40 atoms and open-shell yb+ 174 ions held in a hybrid atom-ion trap. Phys. Rev. Lett. 107, 243201 (2011).
Tscherbul, T. V., Brumer, P. & Buchachenko, A. A. Spin-orbit interactions and quantum spin dynamics in cold ion-atom collisions. Phys. Rev. Lett. 117, 143201 (2016).
Saito, R. et al. Characterization of charge-exchange collisions between ultracold li 6 atoms and ca 40+ ions. Phys. Rev. A 95, 032709 (2017).
Krükow, A. et al. Energy scaling of cold atom-atom-ion three-body recombination. Phys. Rev. Lett. 116, 193201 (2016).
Hirzler, H. et al. Observation of chemical reactions between a trapped ion and ultracold Feshbach dimers. Phys. Rev. Lett. 128, 103401 (2022).
Hall, F. H. & Willitsch, S. Millikelvin reactive collisions between sympathetically cooled molecular ions and laser-cooled atoms in an ion-atom hybrid trap. Phys. Rev. Lett. 109, 233202 (2012).
Tomza, M. & Lisaj, M. Interactions and charge-transfer dynamics of an Al+ ion immersed in ultracold Rb and Sr atoms. Phys. Rev. A 101, 012705 (2020).
Li, H. et al. Photon-mediated charge exchange reactions between 39 K atoms and 40 Ca+ ions in a hybrid trap. Phys. Chem. Chem. Phys. 22, 10870 (2020).
Ewald, N., Feldker, T., Hirzler, H., Fürst, H. & Gerritsma, R. Observation of interactions between trapped ions and ultracold Rydberg atoms. Phys. Rev. Lett. 122, 253401 (2019).
Haze, S., Saito, R., Fujinaga, M. & Mukaiyama, T. Charge-exchange collisions between ultracold fermionic lithium atoms and calcium ions. Phys. Rev. A 91, 032709 (2015).
Schmid, S., Härter, A. & Denschlag, J. H. Dynamics of a cold trapped ion in a bose-einstein condensate. Phys. Rev. Lett. 105, 133202 (2010).
Staanum, P. F., Højbjerre, K., Wester, R. & Drewsen, M. Probing isotope effects in chemical reactions using single ions. Phys. Rev. Lett. 100, 243003 (2008).
Sivarajah, I., Goodman, D., Wells, J., Narducci, F. & Smith, W. Evidence of sympathetic cooling of na+ ions by a Na magneto-optical trap in a hybrid trap. Phys. Rev. A 86, 063419 (2012).
Kleinbach, K. S. et al. Ionic impurity in a Bose-Einstein condensate at submicrokelvin temperatures. Phys. Rev. Lett. 120, 193401 (2018).
Ben-shlomi, R. et al. Direct observation of ultracold atom-ion excitation exchange. Phys. Rev. A 102, 031301(R) (2020).
Sikorsky, T. et al. Phase locking between different partial waves in atom-ion spin-exchange collisions. Phys. Rev. Lett. 121, 173402 (2018).
Côté, R. & Simbotin, I. Signature of the s-wave regime high above ultralow temperatures. Phys. Rev. Lett. 121, 173401 (2018).
Simbotin, I. & Côté, R. Quantum correction to the Langevin cross section in resonant-exchange processes. Phys. Rev. A 112, 062218 (2025)
Ben-shlomi, R. et al. High-energy-resolution measurements of an ultracold-atom–ion collisional cross section. Phys. Rev. A 103, 032805 (2021).
Katz, O., Pinkas, M., Akerman, N. & Ozeri, R. Quantum logic detection of collisions between single atom–ion pairs. Nat. Phys. 18, 533 (2022).
Pinkas, M., Katz, O., Wengrowicz, J., Akerman, N. & Ozeri, R. Trap-assisted formation of atom–ion bound states. Nat. Phys. 19, 1573 (2023).
Walewski, M. Z. et al. Quantum control of ion-atom collisions beyond the ultracold regime. Sci. Adv. 11, eadr8256 (2025).
Härter, A. et al. Single ion as a three-body reaction center in an ultracold atomic gas. Phys. Rev. Lett. 109, 123201 (2012).
Hirzler, H., Trimby, E., Gerritsma, R., Safavi-Naini, A. & Pérez-Ríos, J. Trap-assisted complexes in cold atom-ion collisions. Phys. Rev. Lett. 130, 143003 (2023).
Tsikritea, A., Diprose, J. A., Softley, T. P. & Heazlewood, B. R. Capture theory models: an overview of their development, experimental verification, and applications to ion–molecule reactions. J. Chem. Phys. 157, 060901 (2022).
Li, M., You, L. & Gao, B. Multichannel quantum-defect theory for ion-atom interactions. Phys. Rev. A 89, 052704 (2014).
Li, M. & Gao, B. Proton-hydrogen collisions at low temperatures. Phys. Rev. A 91, 032702 (2015).
Dalgarno, A. & Bates, D. R. The mobilities of ions in their parent gases. Philos. Trans. R. Soc. Lond. Ser. A, Math. Phys. Sci. 250, 426 (1958).
Dalgarno, A. & Rudge, M. Spin-change cross-sections for collisions between alkali atoms. Proc. R. Soc. Lond. Ser. A. Math. Phys. Sci. 286, 519 (1965).
Joshi, N. et al. Homonuclear ion-atom collisions: Application to li+- li. Phys. Rev. A 105, 063311 (2022).
Zhang, P., Dalgarno, A., Côté, R. & Bodo, E. Charge exchange in collisions of beryllium with its ion. Phys. Chem. Chem. Phys. 13, 19026 (2011).
Zhang, P., Dalgarno, A. & Côté, R. Scattering of yb and yb+. Phys. Rev. A-At., Mol., Optical Phys. 80, 030703 (2009).
Wang, P. et al. Single ion qubit with estimated coherence time exceeding one hour. Nat. Commun. 12, 1 (2021).
Shaham, R., Katz, O. & Firstenberg, O. Strong coupling of alkali-metal spins to noble-gas spins with an hour-long coherence time. Nat. Phys. 18, 506 (2022).
Katz, O., Shaham, R. & Firstenberg, O. Coupling light to a nuclear spin gas with a two-photon linewidth of five millihertz. Sci. Adv. 7, eabe9164 (2021).
Katz, O., Shaham, R., Reches, E., Gorshkov, A. V. & Firstenberg, O. Optical quantum memory for noble-gas spins based on spin-exchange collisions. Phys. Rev. A 105, 042606 (2022).
Meir, Z. et al. Experimental apparatus for overlapping a ground-state cooled ion with ultracold atoms. J. Mod. Opt. 65, 501 (2018).
Chen, K., Sullivan, S. T. & Hudson, E. R. Neutral gas sympathetic cooling of an ion in a paul trap. Phys. Rev. Lett. 112, 143009 (2014).
Meir, Z. et al. Direct observation of atom-ion nonequilibrium sympathetic cooling. Phys. Rev. Lett. 121, 053402 (2018).
Zipkes, C., Palzer, S., Ratschbacher, L., Sias, C. & Köhl, M. Cold heteronuclear atom-ion collisions. Phys. Rev. Lett. 105, 133201 (2010).
Cetina, M. et al., Hybrid Approaches To Quantum Information Using Ions, Atoms And Photons, Ph.D. thesis, Massachusetts Institute of Technology (2011).
Côté, R. & Dalgarno, A. Ultracold atom-ion collisions. Phys. Rev. A 62, 012709 (2000).
Leibfried, D., Blatt, R., Monroe, C. & Wineland, D. Quantum dynamics of single trapped ions. Rev. Mod. Phys. 75, 281 (2003).
Zipkes, C., Ratschbacher, L., Sias, C. & Köhl, M. Kinetics of a single trapped ion in an ultracold buffer gas. N. J. Phys. 13, 053020 (2011).
Bermudez, A., Schindler, P., Monz, T., Blatt, R. & Müller, M. Micromotion-enabled improvement of quantum logic gates with trapped ions. N. J. Phys. 19, 113038 (2017).
Meir, Z. et al. Dynamics of a single, ground-state cooled and trapped ion colliding with ultracold atoms: a micromotion tale, Ph.D. thesis, The Weizmann Institute of Science (Israel) (2017).
Meir, Z. et al. Dynamics of a ground-state cooled ion colliding with ultracold atoms. Phys. Rev. Lett. 117, 243401 (2016).
Rouse, I. & Willitsch, S. Superstatistical energy distributions of an ion in an ultracold buffer gas. Phys. Rev. Lett. 118, 143401 (2017).
Gao, B. Theory of slow-atom collisions. Phys. Rev. A 54, 2022 (1996).
Jraij, A., Allouche, A.-R., Korek, M. & Aubert-Frécon, M. Theoretical electronic structure of the alkali-dimer cation rb2+. Chem. Phys. 290, 129 (2003).
Schnabel, J., Cheng, L. & Köhn, A. High-accuracy \({{{\rm{rb}}}}_{2}^{+}\) interaction potentials based on coupled-cluster calculations. Phys. Rev. A 106, 032804 (2022).
Schwerdtfeger, P. & Nagle, J. K. 2018 table of static dipole polarizabilities of the neutral elements in the periodic table. Mol. Phys. 117, 1200 (2019).
Gregoire, M. D., Brooks, N., Trubko, R. & Cronin, A. D. Analysis of polarizability measurements made with atom interferometry. Atoms. https://doi.org/10.3390/atoms4030021 (2016).
Gao, B. General form of the quantum-defect theory for- 1/r α type of potentials with α> 2. Phys. Rev. A 78, 012702 (2008).
Sansonetti, J. E. Wavelengths, transition probabilities, and energy levels for the spectra of rubidium (Rb i through Rb xxxvii). J. Phys. Chem. Ref. Data 35, 301 (2006).
Brown, J. M. & Carrington, A., Rotational spectroscopy of diatomic molecules. (Cambridge University Press, 2003).
Gao, B., Tiesinga, E., Williams, C. J. & Julienne, P. S. Multichannel quantum-defect theory for slow atomic collisions. Phys. Rev. A 72, 042719 (2005).
Gao, B. Quantum-defect theory for- 1/r 4-type interactions. Phys. Rev. A 88, 022701 (2013).
Beyer, M. & Merkt, F. Hyperfine-interaction-induced g/u mixing and its implication on the existence of the first excited vibrational level of the a+ σu+ 2 state of h2+ and on the scattering length of the h+ h+ collision. J. Chem. Phys. 149, 214301 (2018).
Katz, O., Pinkas, M., Akerman, N., Li, M. & Ozeri, R., Quantum suppression of cold reactions far from the s-wave energy limit - dataset https://doi.org/10.5281/zenodo.17715262 (2025).
Acknowledgements
This work was supported by the Israeli Science Foundation and the Goldring Family Foundation. We thank Marko Cetina, Maks Walewski, Mathew Frye, and Michał Tomza for fruitful discussions. O.K. acknowledges support from the U.S. Department of Energy, Office of Science, National Quantum Information Science Research Centers, Quantum Systems Accelerator.
Author information
Authors and Affiliations
Contributions
O.K., M.P., and N.A. contributed to the development of the experimental setup. O.K. performed the experiments. M.L. carried out the numerical simulations and theoretical analysis. O.K. analyzed the experimental data. R.O. supervised the research and secured funding. All authors contributed to the conception, design, interpretation, and writing of the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Communications thanks the anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Katz, O., Pinkas, M., Akerman, N. et al. Quantum suppression of cold reactions far from the s-wave energy limit. Nat Commun (2026). https://doi.org/10.1038/s41467-025-67915-x
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41467-025-67915-x


