Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Quantum suppression of cold reactions far from the s-wave energy limit
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 14 January 2026

Quantum suppression of cold reactions far from the s-wave energy limit

  • Or Katz  ORCID: orcid.org/0000-0001-7634-19931,
  • Meirav Pinkas  ORCID: orcid.org/0000-0003-2184-04742,
  • Nitzan Akerman2,
  • Ming Li3 nAff4 &
  • …
  • Roee Ozeri2 

Nature Communications , Article number:  (2026) Cite this article

  • 1157 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Atomic and molecular collision processes
  • Chemical physics
  • Matter waves and particle beams

Abstract

Quantum effects in chemical reactions are most pronounced at ultracold temperatures, where only a few partial waves contribute. While interference among many partial waves is theoretically expected to persist at higher temperatures, direct evidence for such quantum effects in reactive processes has been lacking. Here, we report signatures of quantum interference suppressing a chemical reaction in the multi-partial-wave regime: resonant charge exchange between a single 87Rb+ ion and its parent atom 87Rb. Using quantum-logic detection on a single atom-ion pair and a calibrated in-situ measurement of Langevin collision probabilities, we benchmark the thermally averaged reaction rate against both classical and quantum predictions. We find that the reaction rate is suppressed by over an order of magnitude relative to the classical expectation, despite occurring in the millikelvin temperature regime (more than three orders of magnitude above the s-wave threshold), where more than a dozen partial waves contribute. These results suggest quantum interference as a key mechanism in chemical reactivity beyond the ultracold limit and offer a platform for probing coherent quantum effects in atom-ion reactions where ab initio methods remain intractable.

Similar content being viewed by others

Precision test of statistical dynamics with state-to-state ultracold chemistry

Article 19 May 2021

A quantum eigenvalue solver based on tensor networks

Article Open access 25 November 2025

Quantum logic detection of collisions between single atom–ion pairs

Article 21 March 2022

Data availability

The data displayed in Figures 2, 6, 7 are publicly accessible at this repository96.

References

  1. Paliwal, P. et al. Determining the nature of quantum resonances by probing elastic and reactive scattering in cold collisions. Nat. Chem. 13, 94 (2021).

    Google Scholar 

  2. Köhler, T., Góral, K. & Julienne, P. S. Production of cold molecules via magnetically tunable feshbach resonances. Rev. Mod. Phys. 78, 1311 (2006).

    Google Scholar 

  3. Chin, C., Grimm, R., Julienne, P. & Tiesinga, E. Feshbach resonances in ultracold gases. Rev. Mod. Phys. 82, 1225 (2010).

    Google Scholar 

  4. Haze, S. et al. Controlling few-body reaction pathways using a Feshbach resonance. Nat. Phys. 21, 228 (2025).

    Google Scholar 

  5. Margulis, B. et al. Tomography of Feshbach resonance states. Science 380, 77 (2023).

    Google Scholar 

  6. Margulis, B. et al. Observation of the p-wave shape resonance in atom-molecule collisions. Phys. Rev. Res. 4, 043042 (2022).

    Google Scholar 

  7. Besemer, M. et al. Glory scattering in deeply inelastic molecular collisions. Nat. Chem. 14, 664 (2022).

    Google Scholar 

  8. Bloch, I., Dalibard, J. & Nascimbene, S. Quantum simulations with ultracold quantum gases. Nat. Phys. 8, 267 (2012).

    Google Scholar 

  9. Schäfer, F., Fukuhara, T., Sugawa, S., Takasu, Y. & Takahashi, Y. Tools for quantum simulation with ultracold atoms in optical lattices. Nat. Rev. Phys. 2, 411 (2020).

    Google Scholar 

  10. Jachymski, K. & Negretti, A. Quantum simulation of extended polaron models using compound atom-ion systems. Phys. Rev. Res. 2, 033326 (2020).

    Google Scholar 

  11. Ospelkaus, S. et al. Quantum-state controlled chemical reactions of ultracold potassium-rubidium molecules. Science 327, 853 (2010).

    Google Scholar 

  12. Gross, C., Zibold, T., Nicklas, E., Esteve, J. & Oberthaler, M. K. Nonlinear atom interferometer surpasses classical precision limit. Nature 464, 1165 (2010).

    Google Scholar 

  13. Safronova, M. et al. Search for new physics with atoms and molecules. Rev. Mod. Phys. 90, 025008 (2018).

    Google Scholar 

  14. Jones, K. M., Tiesinga, E., Lett, P. D. & Julienne, P. S. Ultracold photoassociation spectroscopy: Long-range molecules and atomic scattering. Rev. Mod. Phys. 78, 483 (2006).

    Google Scholar 

  15. Liu, Y. et al. Precision test of statistical dynamics with state-to-state ultracold chemistry. Nature 593, 379 (2021).

    Google Scholar 

  16. Schmidt, F. et al. Tailored single-atom collisions at ultralow energies. Phys. Rev. Lett. 122, 013401 (2019).

    Google Scholar 

  17. Weckesser, P. et al. Observation of Feshbach resonances between a single ion and ultracold atoms. Nature 600, 429 (2021).

    Google Scholar 

  18. Feldker, T. et al. Buffer gas cooling of a trapped ion to the quantum regime. Nat. Phys. 16, 413 (2020).

    Google Scholar 

  19. Jachymski, K., Krych, M., Julienne, P. S. & Idziaszek, Z. Quantum-defect model of a reactive collision at finite temperature. Phys. Rev. A 90, 042705 (2014).

    Google Scholar 

  20. Liu, Y.-X. et al. Quantum interference in atom-exchange reactions. Science 384, 1117 (2024).

    Google Scholar 

  21. Luke, J., Zhu, L., Liu, Y.-X. & Ni, K.-K. Reaction interferometry with ultracold molecules. Faraday Discuss. 251, 63 (2024).

    Google Scholar 

  22. da Silva Jr, H., Kendrick, B., Li, H., Kotochigova, S. & Balakrishnan, N. Nonadiabatically driven quantum interference effects in the ultracold k+ krb → rb+ k2 chemical reaction. J. Phys. Chem. Lett. 16, 6171 (2025).

    Google Scholar 

  23. Kondov, S. et al. Crossover from the ultracold to the quasiclassical regime in state-selected photodissociation. Phys. Rev. Lett. 121, 143401 (2018).

    Google Scholar 

  24. Majewska, I. et al. Experimental and theoretical investigation of the crossover from the ultracold to the quasiclassical regime of photodissociation. Phys. Rev. A 98, 043404 (2018).

    Google Scholar 

  25. Tomza, M. et al. Cold hybrid ion-atom systems. Rev. Mod. Phys. 91, 035001 (2019).

    Google Scholar 

  26. Côté, R. et al. Ultracold Hybrid Atom–ion Systems, in Advances In Atomic, Molecular, And Optical Physics, 65 (Elsevier, 2016).

  27. Cetina, M., Grier, A. T. & Vuletić, V. Micromotion-induced limit to atom-ion sympathetic cooling in paul traps. Phys. Rev. Lett. 109, 253201 (2012).

    Google Scholar 

  28. Pinkas, M. et al. Effect of ion-trap parameters on energy distributions of ultra-cold atom–ion mixtures. N. J. Phys. 22, 013047 (2020).

    Google Scholar 

  29. Lous, R. S. & Gerritsma, R. Ultracold ion-atom experiments: cooling, chemistry, and quantum effects. Adv. At., Mol., Opt.Phys. 71, 65 (2022).

    Google Scholar 

  30. Grier, A. T., Cetina, M., Oručević, F. & Vuletić, V. Observation of cold collisions between trapped ions and trapped atoms. Phys. Rev. Lett. 102, 223201 (2009).

    Google Scholar 

  31. Schmidt, J., Weckesser, P., Thielemann, F., Schaetz, T. & Karpa, L. Optical traps for sympathetic cooling of ions with ultracold neutral atoms. Phys. Rev. Lett. 124, 053402 (2020).

    Google Scholar 

  32. Ratschbacher, L., Zipkes, C., Sias, C. & Köhl, M. Controlling chemical reactions of a single particle. Nat. Phys. 8, 649 (2012).

    Google Scholar 

  33. Härter, A. & Hecker Denschlag, J. Cold atom–ion experiments in hybrid traps. Contemp. Phys. 55, 33 (2014).

    Google Scholar 

  34. Hall, F. H., Aymar, M., Bouloufa-Maafa, N., Dulieu, O. & Willitsch, S. Light-assisted ion-neutral reactive processes in the cold regime: Radiative molecule formation versus charge exchange. Phys. Rev. Lett. 107, 243202 (2011).

    Google Scholar 

  35. Sikorsky, T., Meir, Z., Ben-Shlomi, R., Akerman, N. & Ozeri, R. Spin-controlled atom–ion chemistry. Nat. Commun. 9, 1 (2018).

    Google Scholar 

  36. Mohammadi, A. et al. Life and death of a cold barb+ molecule inside an ultracold cloud of rb atoms. Phys. Rev. Res. 3, 013196 (2021).

    Google Scholar 

  37. Rellergert, W. G. et al. Measurement of a large chemical reaction rate between ultracold closed-shell ca 40 atoms and open-shell yb+ 174 ions held in a hybrid atom-ion trap. Phys. Rev. Lett. 107, 243201 (2011).

    Google Scholar 

  38. Tscherbul, T. V., Brumer, P. & Buchachenko, A. A. Spin-orbit interactions and quantum spin dynamics in cold ion-atom collisions. Phys. Rev. Lett. 117, 143201 (2016).

    Google Scholar 

  39. Saito, R. et al. Characterization of charge-exchange collisions between ultracold li 6 atoms and ca 40+ ions. Phys. Rev. A 95, 032709 (2017).

    Google Scholar 

  40. Krükow, A. et al. Energy scaling of cold atom-atom-ion three-body recombination. Phys. Rev. Lett. 116, 193201 (2016).

    Google Scholar 

  41. Hirzler, H. et al. Observation of chemical reactions between a trapped ion and ultracold Feshbach dimers. Phys. Rev. Lett. 128, 103401 (2022).

    Google Scholar 

  42. Hall, F. H. & Willitsch, S. Millikelvin reactive collisions between sympathetically cooled molecular ions and laser-cooled atoms in an ion-atom hybrid trap. Phys. Rev. Lett. 109, 233202 (2012).

    Google Scholar 

  43. Tomza, M. & Lisaj, M. Interactions and charge-transfer dynamics of an Al+ ion immersed in ultracold Rb and Sr atoms. Phys. Rev. A 101, 012705 (2020).

    Google Scholar 

  44. Li, H. et al. Photon-mediated charge exchange reactions between 39 K atoms and 40 Ca+ ions in a hybrid trap. Phys. Chem. Chem. Phys. 22, 10870 (2020).

    Google Scholar 

  45. Ewald, N., Feldker, T., Hirzler, H., Fürst, H. & Gerritsma, R. Observation of interactions between trapped ions and ultracold Rydberg atoms. Phys. Rev. Lett. 122, 253401 (2019).

    Google Scholar 

  46. Haze, S., Saito, R., Fujinaga, M. & Mukaiyama, T. Charge-exchange collisions between ultracold fermionic lithium atoms and calcium ions. Phys. Rev. A 91, 032709 (2015).

    Google Scholar 

  47. Schmid, S., Härter, A. & Denschlag, J. H. Dynamics of a cold trapped ion in a bose-einstein condensate. Phys. Rev. Lett. 105, 133202 (2010).

    Google Scholar 

  48. Staanum, P. F., Højbjerre, K., Wester, R. & Drewsen, M. Probing isotope effects in chemical reactions using single ions. Phys. Rev. Lett. 100, 243003 (2008).

    Google Scholar 

  49. Sivarajah, I., Goodman, D., Wells, J., Narducci, F. & Smith, W. Evidence of sympathetic cooling of na+ ions by a Na magneto-optical trap in a hybrid trap. Phys. Rev. A 86, 063419 (2012).

    Google Scholar 

  50. Kleinbach, K. S. et al. Ionic impurity in a Bose-Einstein condensate at submicrokelvin temperatures. Phys. Rev. Lett. 120, 193401 (2018).

    Google Scholar 

  51. Ben-shlomi, R. et al. Direct observation of ultracold atom-ion excitation exchange. Phys. Rev. A 102, 031301(R) (2020).

    Google Scholar 

  52. Sikorsky, T. et al. Phase locking between different partial waves in atom-ion spin-exchange collisions. Phys. Rev. Lett. 121, 173402 (2018).

    Google Scholar 

  53. Côté, R. & Simbotin, I. Signature of the s-wave regime high above ultralow temperatures. Phys. Rev. Lett. 121, 173401 (2018).

    Google Scholar 

  54. Simbotin, I. & Côté, R. Quantum correction to the Langevin cross section in resonant-exchange processes. Phys. Rev. A 112, 062218 (2025)

  55. Ben-shlomi, R. et al. High-energy-resolution measurements of an ultracold-atom–ion collisional cross section. Phys. Rev. A 103, 032805 (2021).

    Google Scholar 

  56. Katz, O., Pinkas, M., Akerman, N. & Ozeri, R. Quantum logic detection of collisions between single atom–ion pairs. Nat. Phys. 18, 533 (2022).

    Google Scholar 

  57. Pinkas, M., Katz, O., Wengrowicz, J., Akerman, N. & Ozeri, R. Trap-assisted formation of atom–ion bound states. Nat. Phys. 19, 1573 (2023).

    Google Scholar 

  58. Walewski, M. Z. et al. Quantum control of ion-atom collisions beyond the ultracold regime. Sci. Adv. 11, eadr8256 (2025).

    Google Scholar 

  59. Härter, A. et al. Single ion as a three-body reaction center in an ultracold atomic gas. Phys. Rev. Lett. 109, 123201 (2012).

    Google Scholar 

  60. Hirzler, H., Trimby, E., Gerritsma, R., Safavi-Naini, A. & Pérez-Ríos, J. Trap-assisted complexes in cold atom-ion collisions. Phys. Rev. Lett. 130, 143003 (2023).

    Google Scholar 

  61. Tsikritea, A., Diprose, J. A., Softley, T. P. & Heazlewood, B. R. Capture theory models: an overview of their development, experimental verification, and applications to ion–molecule reactions. J. Chem. Phys. 157, 060901 (2022).

  62. Li, M., You, L. & Gao, B. Multichannel quantum-defect theory for ion-atom interactions. Phys. Rev. A 89, 052704 (2014).

    Google Scholar 

  63. Li, M. & Gao, B. Proton-hydrogen collisions at low temperatures. Phys. Rev. A 91, 032702 (2015).

    Google Scholar 

  64. Dalgarno, A. & Bates, D. R. The mobilities of ions in their parent gases. Philos. Trans. R. Soc. Lond. Ser. A, Math. Phys. Sci. 250, 426 (1958).

    Google Scholar 

  65. Dalgarno, A. & Rudge, M. Spin-change cross-sections for collisions between alkali atoms. Proc. R. Soc. Lond. Ser. A. Math. Phys. Sci. 286, 519 (1965).

    Google Scholar 

  66. Joshi, N. et al. Homonuclear ion-atom collisions: Application to li+- li. Phys. Rev. A 105, 063311 (2022).

    Google Scholar 

  67. Zhang, P., Dalgarno, A., Côté, R. & Bodo, E. Charge exchange in collisions of beryllium with its ion. Phys. Chem. Chem. Phys. 13, 19026 (2011).

    Google Scholar 

  68. Zhang, P., Dalgarno, A. & Côté, R. Scattering of yb and yb+. Phys. Rev. A-At., Mol., Optical Phys. 80, 030703 (2009).

    Google Scholar 

  69. Wang, P. et al. Single ion qubit with estimated coherence time exceeding one hour. Nat. Commun. 12, 1 (2021).

    Google Scholar 

  70. Shaham, R., Katz, O. & Firstenberg, O. Strong coupling of alkali-metal spins to noble-gas spins with an hour-long coherence time. Nat. Phys. 18, 506 (2022).

    Google Scholar 

  71. Katz, O., Shaham, R. & Firstenberg, O. Coupling light to a nuclear spin gas with a two-photon linewidth of five millihertz. Sci. Adv. 7, eabe9164 (2021).

    Google Scholar 

  72. Katz, O., Shaham, R., Reches, E., Gorshkov, A. V. & Firstenberg, O. Optical quantum memory for noble-gas spins based on spin-exchange collisions. Phys. Rev. A 105, 042606 (2022).

    Google Scholar 

  73. Meir, Z. et al. Experimental apparatus for overlapping a ground-state cooled ion with ultracold atoms. J. Mod. Opt. 65, 501 (2018).

    Google Scholar 

  74. Chen, K., Sullivan, S. T. & Hudson, E. R. Neutral gas sympathetic cooling of an ion in a paul trap. Phys. Rev. Lett. 112, 143009 (2014).

    Google Scholar 

  75. Meir, Z. et al. Direct observation of atom-ion nonequilibrium sympathetic cooling. Phys. Rev. Lett. 121, 053402 (2018).

    Google Scholar 

  76. Zipkes, C., Palzer, S., Ratschbacher, L., Sias, C. & Köhl, M. Cold heteronuclear atom-ion collisions. Phys. Rev. Lett. 105, 133201 (2010).

    Google Scholar 

  77. Cetina, M. et al., Hybrid Approaches To Quantum Information Using Ions, Atoms And Photons, Ph.D. thesis, Massachusetts Institute of Technology (2011).

  78. Côté, R. & Dalgarno, A. Ultracold atom-ion collisions. Phys. Rev. A 62, 012709 (2000).

    Google Scholar 

  79. Leibfried, D., Blatt, R., Monroe, C. & Wineland, D. Quantum dynamics of single trapped ions. Rev. Mod. Phys. 75, 281 (2003).

    Google Scholar 

  80. Zipkes, C., Ratschbacher, L., Sias, C. & Köhl, M. Kinetics of a single trapped ion in an ultracold buffer gas. N. J. Phys. 13, 053020 (2011).

    Google Scholar 

  81. Bermudez, A., Schindler, P., Monz, T., Blatt, R. & Müller, M. Micromotion-enabled improvement of quantum logic gates with trapped ions. N. J. Phys. 19, 113038 (2017).

    Google Scholar 

  82. Meir, Z. et al. Dynamics of a single, ground-state cooled and trapped ion colliding with ultracold atoms: a micromotion tale, Ph.D. thesis, The Weizmann Institute of Science (Israel) (2017).

  83. Meir, Z. et al. Dynamics of a ground-state cooled ion colliding with ultracold atoms. Phys. Rev. Lett. 117, 243401 (2016).

    Google Scholar 

  84. Rouse, I. & Willitsch, S. Superstatistical energy distributions of an ion in an ultracold buffer gas. Phys. Rev. Lett. 118, 143401 (2017).

    Google Scholar 

  85. Gao, B. Theory of slow-atom collisions. Phys. Rev. A 54, 2022 (1996).

    Google Scholar 

  86. Jraij, A., Allouche, A.-R., Korek, M. & Aubert-Frécon, M. Theoretical electronic structure of the alkali-dimer cation rb2+. Chem. Phys. 290, 129 (2003).

    Google Scholar 

  87. Schnabel, J., Cheng, L. & Köhn, A. High-accuracy \({{{\rm{rb}}}}_{2}^{+}\) interaction potentials based on coupled-cluster calculations. Phys. Rev. A 106, 032804 (2022).

    Google Scholar 

  88. Schwerdtfeger, P. & Nagle, J. K. 2018 table of static dipole polarizabilities of the neutral elements in the periodic table. Mol. Phys. 117, 1200 (2019).

    Google Scholar 

  89. Gregoire, M. D., Brooks, N., Trubko, R. & Cronin, A. D. Analysis of polarizability measurements made with atom interferometry. Atoms. https://doi.org/10.3390/atoms4030021 (2016).

  90. Gao, B. General form of the quantum-defect theory for- 1/r α type of potentials with α> 2. Phys. Rev. A 78, 012702 (2008).

    Google Scholar 

  91. Sansonetti, J. E. Wavelengths, transition probabilities, and energy levels for the spectra of rubidium (Rb i through Rb xxxvii). J. Phys. Chem. Ref. Data 35, 301 (2006).

    Google Scholar 

  92. Brown, J. M. & Carrington, A., Rotational spectroscopy of diatomic molecules. (Cambridge University Press, 2003).

  93. Gao, B., Tiesinga, E., Williams, C. J. & Julienne, P. S. Multichannel quantum-defect theory for slow atomic collisions. Phys. Rev. A 72, 042719 (2005).

    Google Scholar 

  94. Gao, B. Quantum-defect theory for- 1/r 4-type interactions. Phys. Rev. A 88, 022701 (2013).

    Google Scholar 

  95. Beyer, M. & Merkt, F. Hyperfine-interaction-induced g/u mixing and its implication on the existence of the first excited vibrational level of the a+ σu+ 2 state of h2+ and on the scattering length of the h+ h+ collision. J. Chem. Phys. 149, 214301 (2018).

  96. Katz, O., Pinkas, M., Akerman, N., Li, M. & Ozeri, R., Quantum suppression of cold reactions far from the s-wave energy limit - dataset https://doi.org/10.5281/zenodo.17715262 (2025).

Download references

Acknowledgements

This work was supported by the Israeli Science Foundation and the Goldring Family Foundation. We thank Marko Cetina, Maks Walewski, Mathew Frye, and Michał Tomza for fruitful discussions. O.K. acknowledges support from the U.S. Department of Energy, Office of Science, National Quantum Information Science Research Centers, Quantum Systems Accelerator.

Author information

Author notes
  1. Ming Li

    Present address: Google Quantum AI, Venice, CA, USA

Authors and Affiliations

  1. School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA

    Or Katz

  2. Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel

    Meirav Pinkas, Nitzan Akerman & Roee Ozeri

  3. Atom Computing, Inc., 2500 55th St, Suite 100, Boulder, Colorado, USA

    Ming Li

Authors
  1. Or Katz
    View author publications

    Search author on:PubMed Google Scholar

  2. Meirav Pinkas
    View author publications

    Search author on:PubMed Google Scholar

  3. Nitzan Akerman
    View author publications

    Search author on:PubMed Google Scholar

  4. Ming Li
    View author publications

    Search author on:PubMed Google Scholar

  5. Roee Ozeri
    View author publications

    Search author on:PubMed Google Scholar

Contributions

O.K., M.P., and N.A. contributed to the development of the experimental setup. O.K. performed the experiments. M.L. carried out the numerical simulations and theoretical analysis. O.K. analyzed the experimental data. R.O. supervised the research and secured funding. All authors contributed to the conception, design, interpretation, and writing of the manuscript.

Corresponding author

Correspondence to Or Katz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks the anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Transparent Peer Review file

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katz, O., Pinkas, M., Akerman, N. et al. Quantum suppression of cold reactions far from the s-wave energy limit. Nat Commun (2026). https://doi.org/10.1038/s41467-025-67915-x

Download citation

  • Received: 12 June 2025

  • Accepted: 11 December 2025

  • Published: 14 January 2026

  • DOI: https://doi.org/10.1038/s41467-025-67915-x

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Associated content

Collection

Quantum science with ultracold molecules

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing