Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Dynamic neutrophil-keratinocyte communication network centered on IL-36/TNFSF15 responses characterizes inflammatory responses in generalized pustular psoriasis
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 23 December 2025

Dynamic neutrophil-keratinocyte communication network centered on IL-36/TNFSF15 responses characterizes inflammatory responses in generalized pustular psoriasis

  • Rundong Jiang  ORCID: orcid.org/0009-0006-8296-49121,2,3,
  • Joseph Kirma1,
  • Jennifer Fox1,
  • Xianying Xing1,
  • Jiaqi Wang4,
  • Mrinal K. Sarkar  ORCID: orcid.org/0000-0001-8505-42591,
  • Rachael Bogle  ORCID: orcid.org/0000-0003-3544-30231,
  • Tran Do1,
  • Anthony Coon1,
  • Christopher Cole  ORCID: orcid.org/0009-0001-1396-08821,
  • Olesya Plazyo1,
  • Joanna E. Rew1,
  • Haihan Zhang  ORCID: orcid.org/0000-0002-5902-72895,
  • J. Michelle Kahlenberg  ORCID: orcid.org/0000-0002-4006-89452,6,
  • Allison C. Billi  ORCID: orcid.org/0000-0001-7115-91131,
  • Hervé Bachelez7,
  • Lam C. Tsoi1,8,
  • Paul W. Harms1,9,
  • Shuai Shao4,
  • Xiang Chen  ORCID: orcid.org/0000-0001-8187-636X3 &
  • …
  • Johann E. Gudjonsson  ORCID: orcid.org/0000-0002-0080-08121,2 

Nature Communications , Article number:  (2025) Cite this article

  • 3819 Accesses

  • 20 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Autoimmunity
  • Gene regulation in immune cells
  • Innate immunity
  • Mucosal immunology
  • Psoriasis

Abstract

Generalized pustular psoriasis (GPP) is a severe subtype of psoriasis characterized by epidermal neutrophil infiltration, often presenting as acute, potentially life-threatening flares. However, the characterization of the immune micro-environment in GPP lesions remains largely unknown. Here, we use single-cell RNA profiling to interrogate the transcriptomes of 60,000 single cells from GPP lesional skin (n = 13) and healthy adult skin (n = 4), combined with spatial transcriptomics. We identify a neutrophil subset lacking CASP8 expression but exhibiting elevated levels of inflammatory pathway genes, including RIPK1, NFKB1, IL1B, CXCL1, and CXCL8 in GPP flares, illustrating neutrophil transition from pre-inflammatory to a pro-inflammatory state, and activation of a communication network between IL36G+ keratinocytes and neutrophils in GPP lesions, with TNFSF15 (TL1A) released from neutrophils exaggerating the inflammatory crosstalk. We further demonstrate that fibroblasts and capillary endothelial cells function as central communication hubs in GPP, through dynamic receptor-ligand interactions with several spatially proximate immune cells, including T cells, neutrophils, and macrophages. In this work, we provide an in-depth view of immune cell participation and highlight the role of neutrophil-keratinocyte crosstalk in GPP pathogenesis.

Similar content being viewed by others

Single cell and spatial sequencing define processes by which keratinocytes and fibroblasts amplify inflammatory responses in psoriasis

Article Open access 12 June 2023

Immune-related hub genes and their role in psoriasis pathogenesis

Article Open access 22 May 2025

Advances in the pathogenesis of psoriasis: from keratinocyte perspective

Article Open access 24 January 2022

Data availability

The scRNA-seq data generated are available in GEO under accession number GSE309097 (GEO Accession viewer). The spatial transcriptomics data generated for GPP samples are available in Zenodo (GPP Xenium). The remaining data are available within the Supplementary Information or Source data file from the corresponding author on request. Source data are provided with this paper.

References

  1. Marrakchi, S. & Puig, L. Pathophysiology of generalized pustular psoriasis. Am. J. Clin. Dermatol. 23, 13–19 (2022).

    Google Scholar 

  2. Rivera-Díaz, R., Daudén, E., Carrascosa, J. M., Cueva, P. & Puig, L. Generalized pustular psoriasis: a review on clinical characteristics, diagnosis, and treatment. Dermatol. Ther. 13, 673–688 (2023).

    Google Scholar 

  3. Onoufriadis, A. et al. Mutations in IL36RN/IL1F5 are associated with the severe episodic inflammatory skin disease known as generalized pustular psoriasis. Am. J. Hum. Genet. 89, 432–437 (2011).

    Google Scholar 

  4. Arakawa, A., Ruzicka, T. & Prinz, J. C. Therapeutic efficacy of interleukin 12/interleukin 23 blockade in generalized pustular psoriasis regardless of IL36RN mutation status. JAMA Dermatol. 152, 825–828 (2016).

    Google Scholar 

  5. Prinz, J. et al. Chimaeric CD4 monoclonal antibody in treatment of generalised pustular psoriasis. Lancet 338, 320–321 (1991).

    Google Scholar 

  6. Arakawa, A. et al. Unopposed IL-36 activity promotes clonal CD4(+) T-cell responses with IL-17A production in generalized pustular psoriasis. J. Investig. Dermatol. 138, 1338–1347 (2018).

    Google Scholar 

  7. Swindell, W. R. et al. RNA-Seq analysis of IL-1B and IL-36 responses in epidermal keratinocytes identifies a shared MyD88-dependent gene signature. Front. Immunol. 9, 80 (2018).

    Google Scholar 

  8. Catapano, M. et al. IL-36 promotes systemic IFN-I responses in severe forms of psoriasis. J. Investig. Dermatol. 140, 816–826.e813 (2020).

    Google Scholar 

  9. Twelves, S. et al. Clinical and genetic differences between pustular psoriasis subtypes. J. Allergy Clin. Immunol. 143, 1021–1026 (2019).

    Google Scholar 

  10. Johnston, A. et al. IL-1 and IL-36 are dominant cytokines in generalized pustular psoriasis. J. Allergy Clin. Immunol. 140, 109–120 (2017).

    Google Scholar 

  11. Marrakchi, S. et al. Interleukin-36-receptor antagonist deficiency and generalized pustular psoriasis. N. Engl. J. Med. 365, 620–628 (2011).

    Google Scholar 

  12. Bachelez, H. et al. Trial of spesolimab for generalized pustular psoriasis. N. Engl. J. Med. 385, 2431–2440 (2021).

    Google Scholar 

  13. Morita, A. et al. Efficacy and safety of subcutaneous spesolimab for the prevention of generalised pustular psoriasis flares (Effisayil 2): an international, multicentre, randomised, placebo-controlled trial. Lancet 402, 1541–1551 (2023).

    Google Scholar 

  14. Henry, C. M. et al. Neutrophil-derived proteases escalate inflammation through activation of IL-36 family cytokines. Cell Rep. 14, 708–722 (2016).

    Google Scholar 

  15. Iznardo, H. & Puig, L. Exploring the role of IL-36 cytokines as a new target in psoriatic disease. Int. J. Mol. Sci. 22, https://doi.org/10.3390/ijms22094344 (2021).

  16. Ma, F. et al. Single-cell and spatial sequencing define processes by which keratinocytes and fibroblasts amplify inflammatory responses in psoriasis. Nat. Commun. 14, 3455 (2023).

    Google Scholar 

  17. Hoegler, K. M., John, A. M., Handler, M. Z. & Schwartz, R. A. Generalized pustular psoriasis: a review and update on treatment. J. Eur. Acad. Dermatol. Venereol. 32, 1645–1651 (2018).

    Google Scholar 

  18. Francis, L. et al. Single-cell analysis of psoriasis resolution demonstrates an inflammatory fibroblast state targeted by IL-23 blockade. Nat. Commun. 15, 913 (2024).

    Google Scholar 

  19. Ma, F. et al. Systems-based identification of the Hippo pathway for promoting fibrotic mesenchymal differentiation in systemic sclerosis. Nat. Commun. 15, 210 (2024).

    Google Scholar 

  20. Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902.e1821 (2019).

    Google Scholar 

  21. West, A. P. et al. TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature 472, 476–480 (2011).

    Google Scholar 

  22. Yang, L. et al. Hsa_circ_0004287 inhibits macrophage-mediated inflammation in an N(6)-methyladenosine-dependent manner in atopic dermatitis and psoriasis. J. Allergy Clin. Immunol. 149, 2021–2033 (2022).

    Google Scholar 

  23. Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381–386 (2014).

    Google Scholar 

  24. Sarode, P. et al. Reprogramming of tumor-associated macrophages by targeting β-catenin/FOSL2/ARID5A signaling: a potential treatment of lung cancer. Sci. Adv. 6, eaaz6105 (2020).

    Google Scholar 

  25. Duong, E. et al. Type I interferon activates MHC class I-dressed CD11b(+) conventional dendritic cells to promote protective anti-tumor CD8(+) T cell immunity. Immunity 55, 308–323.e309 (2022).

    Google Scholar 

  26. Walker, J. G. et al. Characterisation of a dendritic cell subset in synovial tissue which strongly expresses Jak/STAT transcription factors from patients with rheumatoid arthritis. Ann. Rheum. Dis. 66, 992–999 (2007).

    Google Scholar 

  27. Chen, J. et al. CREB1-driven CXCR4(hi) neutrophils promote skin inflammation in mouse models and human patients. Nat. Commun. 14, 5894 (2023).

    Google Scholar 

  28. Wigerblad, G. & Kaplan, M. J. Neutrophil extracellular traps in systemic autoimmune and autoinflammatory diseases. Nat. Rev. Immunol. 23, 274–288 (2023).

    Google Scholar 

  29. Brinkmann, V. et al. Neutrophil extracellular traps kill bacteria. Science 303, 1532–1535 (2004).

    Google Scholar 

  30. Oberst, A. et al. Catalytic activity of the caspase-8-FLIP(L) complex inhibits RIPK3-dependent necrosis. Nature 471, 363–367 (2011).

    Google Scholar 

  31. Weinlich, R., Oberst, A., Beere, H. M. & Green, D. R. Necroptosis in development, inflammation and disease. Nat. Rev. Mol. Cell Biol. 18, 127–136 (2017).

    Google Scholar 

  32. Gulati, G. S. et al. Single-cell transcriptional diversity is a hallmark of developmental potential. Science 367, 405–411 (2020).

    Google Scholar 

  33. Haskamp, S. et al. Transcriptomes of MPO-deficient patients with generalized pustular psoriasis reveal expansion of CD4(+) Cytotoxic T cells and an involvement of the complement system. J. Investig. Dermatol. 142, 2149–2158.e2110 (2022).

    Google Scholar 

  34. Hall, J. A. et al. Transcription factor RORα enforces stability of the Th17 cell effector program by binding to a Rorc cis-regulatory element. Immunity 55, 2027–2043.e2029 (2022).

    Google Scholar 

  35. Drummond, R. A. et al. CARD9(+) microglia promote antifungal immunity via IL-1β- and CXCL1-mediated neutrophil recruitment. Nat. Immunol. 20, 559–570 (2019).

    Google Scholar 

  36. Yu, K. et al. Bacterial indole-3-lactic acid affects epithelium-macrophage crosstalk to regulate intestinal homeostasis. Proc. Natl. Acad. Sci. USA 120, e2309032120 (2023).

    Google Scholar 

  37. Hume, D. A. & MacDonald, K. P. Therapeutic applications of macrophage colony-stimulating factor-1 (CSF-1) and antagonists of CSF-1 receptor (CSF-1R) signaling. Blood 119, 1810–1820 (2012).

    Google Scholar 

  38. Guilliams, M., Thierry, G. R., Bonnardel, J. & Bajenoff, M. Establishment and maintenance of the macrophage niche. Immunity 52, 434–451 (2020).

    Google Scholar 

  39. Li, X. et al. The dynamically evolving cell states and ecosystem from benign nevi to melanoma. Clin. Cancer Res. https://doi.org/10.1158/1078-0432.ccr-24-2971 (2025).

  40. Pan, X. et al. Tumour vasculature at single-cell resolution. Nature 632, 429–436 (2024).

    Google Scholar 

  41. Ahmad, F. et al. Emerging role of the IL-36/IL-36R axis in multiple inflammatory skin diseases. J. Investig. Dermatol. 144, 206–224 (2024).

    Google Scholar 

  42. Xu, W. D., Li, R. & Huang, A. F. Role of TL1A in inflammatory autoimmune diseases: a comprehensive review. Front. Immunol. 13, 891328 (2022).

    Google Scholar 

  43. Bamias, G. et al. Expression, localization, and functional activity of TL1A, a novel Th1-polarizing cytokine in inflammatory bowel disease. J. Immunol. 171, 4868–4874 (2003).

    Google Scholar 

  44. Dickson, M. A. et al. Human keratinocytes that express hTERT and also bypass a p16(INK4a)-enforced mechanism that limits life span become immortal yet retain normal growth and differentiation characteristics. Mol. Cell. Biol. 20, 1436–1447 (2000).

    Google Scholar 

  45. Frisch, S. M. Caspase-8: fly or die. Cancer Res. 68, 4491–4493 (2008).

    Google Scholar 

  46. Newton, K. et al. Cleavage of RIPK1 by caspase-8 is crucial for limiting apoptosis and necroptosis. Nature 574, 428–431 (2019).

    Google Scholar 

  47. Lentini, G. et al. Caspase-8 inhibition improves the outcome of bacterial infections in mice by promoting neutrophil activation. Cell Rep. Med. 4, 101098 (2023).

    Google Scholar 

  48. Towne, J. E. et al. Interleukin-36 (IL-36) ligands require processing for full agonist (IL-36α, IL-36β, and IL-36γ) or antagonist (IL-36Ra) activity. J. Biol. Chem. 286, 42594–42602 (2011).

    Google Scholar 

  49. Bayry, J. Immunology: TL1A in the inflammatory network in autoimmune diseases. Nat. Rev. Rheumatol. 6, 67–68 (2010).

    Google Scholar 

  50. Danese, S. et al. Anti-TL1A antibody PF-06480605 safety and efficacy for ulcerative colitis: a phase 2a single-arm Study. Clin. Gastroenterol. Hepatol. 19, 2324–2332.e2326 (2021).

    Google Scholar 

  51. Chinnaiyan, A. M. et al. Signal transduction by DR3, a death domain-containing receptor related to TNFR-1 and CD95. Science274, 990–992 (1996).

    Google Scholar 

  52. Pobezinskaya, Y. L., Choksi, S., Morgan, M. J., Cao, X. & Liu, Z. G. The adaptor protein TRADD is essential for TNF-like ligand 1A/death receptor 3 signaling. J. Immunol. 186, 5212–5216 (2011).

    Google Scholar 

  53. Migone, T. S. et al. TL1A is a TNF-like ligand for DR3 and TR6/DcR3 and functions as a T cell costimulator. Immunity 16, 479–492 (2002).

    Google Scholar 

  54. Bamias, G. et al. Upregulation and nuclear localization of TNF-like cytokine 1A (TL1A) and its receptors DR3 and DcR3 in psoriatic skin lesions. Exp. Dermatol. 20, 725–731 (2011).

    Google Scholar 

  55. Bamias, G., Menghini, P., Pizarro, T. T. & Cominelli, F. Targeting TL1A and DR3: the new frontier of anti-cytokine therapy in IBD. Gut 74, 652–668 (2025).

    Google Scholar 

  56. McGuire, J. & Arnesen, S. Control of keratinocyte division in vitro. J. Investig. Dermatol. 59, 84–90 (1972).

    Google Scholar 

  57. Pulido-Pérez, A. & Bergon-Sendin, M. Sweet’s syndrome. N. Engl. J. Med. 382, 1543 (2020).

    Google Scholar 

  58. Sugiura, K. The genetic background of generalized pustular psoriasis: IL36RN mutations and CARD14 gain-of-function variants. J. Dermatol. Sci. 74, 187–192 (2014).

    Google Scholar 

  59. Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018).

    Google Scholar 

  60. Sica, A. & Mantovani, A. Macrophage plasticity and polarization: in vivo veritas. J. Clin. Investig. 122, 787–795 (2012).

    Google Scholar 

  61. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102, 15545–15550 (2005).

    Google Scholar 

  62. Hänzelmann, S., Castelo, R. & Guinney, J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinform. 14, 7 (2013).

    Google Scholar 

  63. Corridoni, D. et al. Single-cell atlas of colonic CD8(+) T cells in ulcerative colitis. Nat. Med. 26, 1480–1490 (2020).

    Google Scholar 

  64. Billi, A. C. et al. Nonlesional lupus skin contributes to inflammatory education of myeloid cells and primes for cutaneous inflammation. Sci. Transl. Med. 14, eabn2263 (2022).

    Google Scholar 

  65. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genom. Biol. 15, 550 (2014).

    Google Scholar 

  66. Jin, S. et al. Inference and analysis of cell–cell communication using CellChat. Nat. Commun. 12, 1088 (2021).

    Google Scholar 

  67. Browaeys, R., Saelens, W. & Saeys, Y. NicheNet: modeling intercellular communication by linking ligands to target genes. Nat. Methods 17, 159–162 (2020).

    Google Scholar 

  68. Janesick, A. et al. High-resolution mapping of the tumor microenvironment using integrated single-cell, spatial and in situ analysis. Nat. Commun. 14, 8353 (2023).

    Google Scholar 

Download references

Acknowledgements

This work was supported by a non-restricted research grant from Boehringer Ingelheim (J.E.G.), the National Institutes of Health (K01AR072129 and R01AR080662 to L.C.T.; 1P30AR075043 to L.C.T., M.T.P., and J.E.G.; UC2 AR081033 to L.C.T. and J.E.G.). Sinocare Diabetes Foundation Scholarship for the Michigan-Xiangya MD/PhD Dual Degree Program (awarded to R.J.).

Author information

Authors and Affiliations

  1. Department of Dermatology, University of Michigan, Ann Arbor, MI, USA

    Rundong Jiang, Joseph Kirma, Jennifer Fox, Xianying Xing, Mrinal K. Sarkar, Rachael Bogle, Tran Do, Anthony Coon, Christopher Cole, Olesya Plazyo, Joanna E. Rew, Allison C. Billi, Lam C. Tsoi, Paul W. Harms & Johann E. Gudjonsson

  2. Graduate Program in Immunology, University of Michigan, Ann Arbor, MI, USA

    Rundong Jiang, J. Michelle Kahlenberg & Johann E. Gudjonsson

  3. Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China

    Rundong Jiang & Xiang Chen

  4. Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China

    Jiaqi Wang & Shuai Shao

  5. Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA

    Haihan Zhang

  6. Division of Rheumatology, Department of Internal Medicine, University of Michigan, Arbor, MI, USA

    J. Michelle Kahlenberg

  7. Laboratory of Genetic of Skin Diseases, INSERM U1163, Imagine Institute, Université Paris Cité, Paris, France

    Hervé Bachelez

  8. Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI, USA

    Lam C. Tsoi

  9. Department of Pathology, University of Michigan, Ann Arbor, MI, USA

    Paul W. Harms

Authors
  1. Rundong Jiang
    View author publications

    Search author on:PubMed Google Scholar

  2. Joseph Kirma
    View author publications

    Search author on:PubMed Google Scholar

  3. Jennifer Fox
    View author publications

    Search author on:PubMed Google Scholar

  4. Xianying Xing
    View author publications

    Search author on:PubMed Google Scholar

  5. Jiaqi Wang
    View author publications

    Search author on:PubMed Google Scholar

  6. Mrinal K. Sarkar
    View author publications

    Search author on:PubMed Google Scholar

  7. Rachael Bogle
    View author publications

    Search author on:PubMed Google Scholar

  8. Tran Do
    View author publications

    Search author on:PubMed Google Scholar

  9. Anthony Coon
    View author publications

    Search author on:PubMed Google Scholar

  10. Christopher Cole
    View author publications

    Search author on:PubMed Google Scholar

  11. Olesya Plazyo
    View author publications

    Search author on:PubMed Google Scholar

  12. Joanna E. Rew
    View author publications

    Search author on:PubMed Google Scholar

  13. Haihan Zhang
    View author publications

    Search author on:PubMed Google Scholar

  14. J. Michelle Kahlenberg
    View author publications

    Search author on:PubMed Google Scholar

  15. Allison C. Billi
    View author publications

    Search author on:PubMed Google Scholar

  16. Hervé Bachelez
    View author publications

    Search author on:PubMed Google Scholar

  17. Lam C. Tsoi
    View author publications

    Search author on:PubMed Google Scholar

  18. Paul W. Harms
    View author publications

    Search author on:PubMed Google Scholar

  19. Shuai Shao
    View author publications

    Search author on:PubMed Google Scholar

  20. Xiang Chen
    View author publications

    Search author on:PubMed Google Scholar

  21. Johann E. Gudjonsson
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Conceptualization: R.J. and J.E.G.; Methodology: R.J., J.K., J.F., J.W., R.B., M.K.S., S.S., and J.E.G.; Imaging: X.X. and R.J.; Investigation: R.J., J.K., J.F., X.X., J.W., M.K.S., R.B., T.D., A.C., C.C., O.P., J.E.R., H.Z., J.M.K., P.W.H., H.B., L.C.T., S.S., and A.C.B.; Writing: R.J. and J.E.G.; Funding Acquisition: L.C.T. and J.E.G. Supervision: H.B., X.C., and J.E.G.

Corresponding authors

Correspondence to Xiang Chen or Johann E. Gudjonsson.

Ethics declarations

Competing interests

This was an independent, investigator-initiated study supported by Boehringer Ingelheim Pharmaceuticals, Inc. (BIPI). BIPI had no role in the design, analysis or interpretation of the results in this study. BIPI was given the opportunity to review the manuscript for medical and scientific accuracy as it relates to BIPI substances, as well as intellectual property considerations. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Mayumi Komine, Shigetoshi Sano and the other anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Reporting Summary

Transparent Peer Review file

Source data

Source data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, R., Kirma, J., Fox, J. et al. Dynamic neutrophil-keratinocyte communication network centered on IL-36/TNFSF15 responses characterizes inflammatory responses in generalized pustular psoriasis. Nat Commun (2025). https://doi.org/10.1038/s41467-025-67917-9

Download citation

  • Received: 20 January 2025

  • Accepted: 11 December 2025

  • Published: 23 December 2025

  • DOI: https://doi.org/10.1038/s41467-025-67917-9

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing