Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
BARCODE: high throughput screening and analysis of soft active materials
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 31 December 2025

BARCODE: high throughput screening and analysis of soft active materials

  • Qiaopeng Chen1 na1,
  • Aditya Sriram  ORCID: orcid.org/0000-0001-7356-70142 na1,
  • Ayan Das1,
  • Katarina Matic2,
  • Maya Hendija2,
  • Keegan Tonry3,
  • Jennifer L. Ross  ORCID: orcid.org/0000-0002-4838-37984,
  • Moumita Das  ORCID: orcid.org/0000-0002-0397-88863,
  • Ryan J. McGorty  ORCID: orcid.org/0000-0002-6577-060X2,
  • Rae M. Robertson-Anderson  ORCID: orcid.org/0000-0003-4475-46672 na2 &
  • …
  • Megan T. Valentine  ORCID: orcid.org/0000-0003-4781-84781 na2 

Nature Communications , Article number:  (2025) Cite this article

  • 4630 Accesses

  • 2 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Biomaterials
  • Biophysics
  • Characterization and analytical techniques
  • Data processing

Abstract

Active, responsive, non-equilibrium materials–at the forefront of materials engineering–offer dynamical restructuring, mobility and other complex life-like properties. Yet, this enhanced functionality comes with significant amplification of the size and complexity of the datasets needed to characterize their properties, thereby challenging conventional approaches to analysis. To meet this need, we present BARCODE: Biomaterial Activity Readouts to Categorize, Optimize, Design and Engineer, an open-access software that automates high throughput screening of microscopy video data to enable non-equilibrium material optimization and discovery. BARCODE produces a unique fingerprint or ‘barcode’ of performance metrics that visually and quantitatively encodes dynamic material properties with minimal file size. Using three complementary material-agnostic analysis branches, BARCODE significantly reduces data dimensionality and size, while providing rich, multiparametric outputs and rapid tractable characterization of activity and structure. We analyze a series of datasets of cytoskeleton networks and cell monolayers to demonstrate BARCODE’s abilities to accelerate and streamline screening and analysis, reveal unexpected correlations and emergence, and enable broad non-expert data access, comparison, and sharing.

Similar content being viewed by others

A composite universal DNA signature for the tree of life

Article Open access 25 June 2025

Development of a mitochondrial mini-barcode and its application in metabarcoding for identification of leech in traditional Chinese medicine

Article Open access 11 January 2025

Visual barcodes for clonal-multiplexing of live microscopy-based assays

Article Open access 18 May 2022

Data availability

The source data for all plots shown in Figs. 2–5 have been deposited in the Dryad repository and can be accessed at: https://doi.org/10.5061/dryad.pc866t235. Source data are provided with this paper.

Code availability

BARCODE and supporting documentation are available on the GitHub repository58 at https://github.com/softmatterdb/barcode and can be accessed at: https://doi.org/10.5281/zenodo.17585069.

References

  1. Ziepke, A., Maryshev, I., Aranson, I. S. & Frey, E. Multi-scale organization in communicating active matter. Nat. Commun. 13, 6727 (2022).

    Google Scholar 

  2. Shaebani, M. R., Wysocki, A., Winkler, R. G., Gompper, G. & Rieger, H. Computational models for active matter. Nat. Rev. Phys. 2, 181–199 (2020).

    Google Scholar 

  3. Ghanbari, F., Sgarrella, J. & Peco, C. Emergent dynamics in slime mold networks. J. Mech. Phys. Solids 179, 105387 (2023).

    Google Scholar 

  4. Hallatschek, O. et al. Proliferating active matter. Nat. Rev. Phys. 5, 407–419 (2023).

    Google Scholar 

  5. Banerjee, S., Gardel, M. L. & Schwarz, U. S. The actin cytoskeleton as an active adaptive material. Annu. Rev. Condens. Matter Phys. 11, 421–439 (2020).

    Google Scholar 

  6. Hueschen, C. L. et al. Emergent actin flows explain distinct modes of gliding motility. Nat. Phys. 20, 1989–1996 (2024).

    Google Scholar 

  7. Maroudas-Sacks, Y., Garion, L., Suganthan, S., Popović, M. & Keren, K. Confinement modulates axial patterning in regenerating hydra. PRX Life 2, 043007 (2024).

    Google Scholar 

  8. Fletcher, D. A. & Geissler, P. L. Active biological materials. Annu. Rev. Phys. Chem. 60, 469–486 (2009).

    Google Scholar 

  9. Needleman, D. & Dogic, Z. Active matter at the interface between materials science and cell biology. Nat. Rev. Mater. 2, 17048 (2017).

    Google Scholar 

  10. Alvarado, J., Sheinman, M., Sharma, A., MacKintosh, F. C. & Koenderink, G. H. Molecular motors robustly drive active gels to a critically connected state. Nat. Phys. 9, 591–597 (2013).

    Google Scholar 

  11. Linsmeier, I. et al. Disordered actomyosin networks are sufficient to produce cooperative and telescopic contractility. Nat. Commun. 7, 12615 (2016).

    Google Scholar 

  12. Lee, G. et al. Myosin-driven actin-microtubule networks exhibit self-organized contractile dynamics. Sci. Adv. 7, eabe4334 (2021).

    Google Scholar 

  13. Nguyen, D. T. & Saleh, O. A. Tuning phase and aging of DNA hydrogels through molecular design. Soft Matter 13, 5421–5427 (2017).

    Google Scholar 

  14. Bate, T. E. et al. Self-mixing in microtubule-kinesin active fluid from nonuniform to uniform distribution of activity. Nat. Commun. 13, 6573 (2022).

    Google Scholar 

  15. Zhang, M., Pal, A., Lyu, X., Wu, Y. & Sitti, M. Artificial-goosebump-driven microactuation. Nat. Mater. 23, 560–569 (2024).

    Google Scholar 

  16. Daly, M. L. et al. Designer peptide–DNA cytoskeletons regulate the function of synthetic cells. Nat. Chem. 16, 1229–1239 (2024).

    Google Scholar 

  17. Schwartz, M. & Lagerwall, J. P. F. Embedding intelligence in materials for responsive built environment: a topical review on liquid crystal elastomer actuators and sensors. Build. Environ. 226, 109714 (2022).

    Google Scholar 

  18. Wang, J., Zhang, M., Han, S., Zhu, L. & Jia, X. Multiple-stimuli-responsive multicolor luminescent self-healing hydrogel and application in information encryption and bioinspired camouflage. J. Mater. Chem. C. 10, 15565–15572 (2022).

    Google Scholar 

  19. Hua, M. et al. Strong tough hydrogels via the synergy of freeze-casting and salting out. Nature 590, 594–599 (2021).

    Google Scholar 

  20. McGorty, R. J. et al. Kinesin and myosin motors compete to drive rich multiphase dynamics in programmable cytoskeletal composites. PNAS Nexus 2, pgad245 (2023).

  21. Ross, T. D. et al. Controlling organization and forces in active matter through optically defined boundaries. Nature 572, 224–229 (2019).

    Google Scholar 

  22. Schuppler, M., Keber, F. C., Kröger, M. & Bausch, A. R. Boundaries steer the contraction of active gels. Nat. Commun. 7, 13120 (2016).

    Google Scholar 

  23. Sheung, J. Y. et al. Motor-driven restructuring of cytoskeleton composites leads to tunable time-varying elasticity. ACS Macro Lett. 10, 1151–1158 (2021).

    Google Scholar 

  24. Foster, P. J., Fürthauer, S., Shelley, M. J. & Needleman, D. J. Active contraction of microtubule networks. eLife 4, e10837 (2015).

    Google Scholar 

  25. Lee, G. et al. Active cytoskeletal composites display emergent tunable contractility and restructuring. Soft Matter 17, 10765–10776 (2021).

    Google Scholar 

  26. Chaudhuri, O., Parekh, S. H. & Fletcher, D. A. Reversible stress softening of actin networks. Nature 445, 295–298 (2007).

    Google Scholar 

  27. Jorgenson, T. D. et al. Highly flexible PEG-LifeAct constructs act as tunable biomimetic actin crosslinkers. Soft Matter 20, 971–977 (2024).

    Google Scholar 

  28. Lemma, L. M. et al. Multiscale microtubule dynamics in active nematics. Phys. Rev. Lett. 127, 148001 (2021).

    Google Scholar 

  29. Henkin, G., DeCamp, S. J., Chen, D. T. N., Sanchez, T. & Dogic, Z. Tunable dynamics of microtubule-based active isotropic gels. Philos. Trans. R. Soc. A Math., Phys. Eng. Sci. 372, 20140142 (2014).

    Google Scholar 

  30. Berezney, J., Goode, B. L., Fraden, S. & Dogic, Z. Extensile to contractile transition in active microtubule–actin composites generates layered asters with programmable lifetimes. Proc. Natl. Acad. Sci. 119, e2115895119 (2022).

    Google Scholar 

  31. López Barreiro, D. et al. Sequence control of the self-assembly of elastin-like polypeptides into hydrogels with bespoke viscoelastic and structural properties. Biomacromolecules 24, 489–501 (2023).

    Google Scholar 

  32. Conboy, J. P., Istúriz Petitjean, I., van der Net, A. & Koenderink, G. H. How cytoskeletal crosstalk makes cells move: bridging cell-free and cell studies. Biophys. Rev. 5, 021307 (2024).

  33. Tan, T. H. et al. Self-organized stress patterns drive state transitions in actin cortices. Sci. Adv. 4, eaar2847 (2018).

    Google Scholar 

  34. Luo, Y. et al. Molecular-scale substrate anisotropy, crowding and division drive collective behaviours in cell monolayers. J. R. Soc. Interface 20, 20230160 (2023).

    Google Scholar 

  35. Zhang, G. & Yeomans, J. M. Active forces in confluent cell monolayers. Phys. Rev. Lett. 130, 038202 (2023).

    Google Scholar 

  36. Ladoux, B. & Mège, R.-M. Mechanobiology of collective cell behaviours. Nat. Rev. Mol. Cell Biol. 18, 743–757 (2017).

    Google Scholar 

  37. Malinverno, C. et al. Endocytic reawakening of motility in jammed epithelia. Nat. Mater. 16, 587–596 (2017).

    Google Scholar 

  38. Palamidessi, A. et al. Unjamming overcomes kinetic and proliferation arrest in terminally differentiated cells and promotes collective motility of carcinoma. Nat. Mater. 18, 1252–1263 (2019).

    Google Scholar 

  39. Angelini, T. E., Hannezo, E., Trepat, X., Fredberg, J. J. & Weitz, D. A. Cell migration driven by cooperative substrate deformation patterns. Phys. Rev. Lett. 104, 168104 (2010).

    Google Scholar 

  40. Farnebäck, G. Two-Frame Motion Estimation Based on Polynomial Expansion. In: Image Analysis (eds Bigun, J., Gustavsson, T.). Lecture Notes in Computer Science, vol. 2749, p. 363–370 (Springer, Berlin, Heidelberg, 2003).

  41. Pandey, S. & Bharti, J. Review of Different Binarization Techniques Used in Different Areas of Image Analysis. In: Evolution in Signal Processing and Telecommunication Networks. (eds Chowdary, P.S.R., Anguera, J., Satapathy, S.C., Bhateja, V.) Lecture Notes in Electrical Engineering, vol. 839, p. 249–268 (Springer, Singapore, 2022).

  42. Robertson-Anderson, R. M. Biopolymer Networks: Design, dynamics and discovery. (Institute of Physics Publishing, 2024).

  43. Tran, P. N. et al. Deep-learning optical flow for measuring velocity fields from experimental data. Soft Matter 20, 7246–7257 (2024).

    Google Scholar 

  44. Gurmessa, B. et al. Counterion crossbridges enable robust multiscale elasticity in actin networks. Phys. Rev. Res. 1, 013016 (2019).

    Google Scholar 

  45. Krauss, P., Metzner, C., Lange, J., Lang, N. & Fabry, B. Parameter-Free Binarization and Skeletonization of Fiber Networks from Confocal Image Stacks. PLOS ONE 7, e36575 (2012).

    Google Scholar 

  46. LaTorre, A., Alonso-Nanclares, L., Muelas, S., Peña, J.-M. & DeFelipe, J. 3D segmentations of neuronal nuclei from confocal microscope image stacks. Front. Neuroanat. 7, 49 (2013).

  47. Delpiano, J. et al. Performance of optical flow techniques for motion analysis of fluorescent point signals in confocal microscopy. Mach. Vis. Appl. 23, 675–689 (2012).

    Google Scholar 

  48. Living Biotic-Abiotic Materials: BARCODE Tutorial https://www.livingbam.org/barcode-tutorial (2025).

  49. Cerbino, R. & Trappe, V. Differential Dynamic Microscopy: Probing Wave Vector Dependent Dynamics with a Microscope. Phys. Rev. Lett. 100, 188102 (2008).

    Google Scholar 

  50. Verwei, H. N. et al. Quantifying Cytoskeleton Dynamics Using Differential Dynamic Microscopy. Vol. 184 (1940-087X, 2022).

  51. Cerbino, R., Giavazzi, F. & Helgeson, M. E. Differential dynamic microscopy for the characterization of polymer systems. J. Polym. Sci. 60, 1079–1089 (2022).

    Google Scholar 

  52. Robertson, C. & George, S. Theory and practical recommendations for autocorrelation-based image correlation spectroscopy. J. Biomed. Opt. 17, 080801 (2012).

    Google Scholar 

  53. Crocker, J. C. & Grier, D. G. Methods of Digital Video Microscopy for Colloidal Studies. J. Colloid Interface Sci. 179, 298–310 (1996).

    Google Scholar 

  54. Valentine, M. T. et al. Investigating the microenvironments of inhomogeneous soft materials with multiple particle tracking. Phys. Rev. E 64, 061506 (2001).

    Google Scholar 

  55. Nédélec, F. J., Surrey, T., Maggs, A. C. & Leibler, S. Self-organization of microtubules and motors. Nature 389, 305–308 (1997).

    Google Scholar 

  56. Young, E. C., Berliner, E., Mahtani, H. K., Perez-Ramirez, B. & Gelles, J. Subunit interactions in dimeric kinesin heavy chain derivatives that lack the Kinesin Rod. J. Biol. Chem. 270, 3926–3931 (1995).

    Google Scholar 

  57. Ricketts, S. N. et al. Varying crosslinking motifs drive the mesoscale mechanics of actin-microtubule composites. Sci. Rep. 9, 12831 (2019).

    Google Scholar 

  58. Chen, Q. et al. BARCODE: high throughput screening and analysis of soft active materials, Zenodo, https://doi.org/10.5281/zenodo.17585069 (2025).

Download references

Acknowledgements

BARCODE was developed through Hackathon events held at University of California, Santa Barbara and supported by the US National Science Foundation (NSF) Designing Materials to Revolutionize and Engineer our Future (DMREF) program with contributions from the following participants: Jonathan Michel, Mengyang Gu, Prashali Chauhan, Laura Morocho, Nimisha Krishnan, Anindya Chowdhury, Lauren Melcher, JJ Siu, Gregor Leech, Mehrzad Sasanpour, and Karthik Peddireddy. We acknowledge funding from the US National Science Foundation DMREF program through following grants: NSF DMR-2119663 (to RMRA), NSF DMR-2118403 (to JLR), NSF DMR-2118449 (to MD), NSF DMR-2118497 (to MTV), Research Corporation for Science Advancement award no. CS-PBP-2023-019 (to RMRA, MH), Arnold and Mabel Beckman Foundation Beckman Scholars Program (to RMRA, KM) and the NSF BioPACIFIC Materials Innovation Platform NSF DMR-1933487 for personnel support (QC) and access to research infrastructure. We thank Christopher Dunham, BioPACIFIC MIP, Emmie Kao and Christopher Tao for helpful discussions and preliminary research development, and Eric Feng for assistance in updating the graphical user interface. We thank Jose Alvarado, Gijsje Koenderink, and Yimin Luo for providing data10,34 and for helpful discussions. We thank Roberto Cerbino and Jasmin Di Franco for providing unpublished data and for helpful discussions.

Author information

Author notes
  1. These authors contributed equally: Qiaopeng Chen, Aditya Sriram.

  2. These authors jointly supervised this work: Rae M. Robertson-Anderson, Megan T. Valentine.

Authors and Affiliations

  1. Department of Mechanical Engineering, University of California, Santa Barbara, CA, USA

    Qiaopeng Chen, Ayan Das & Megan T. Valentine

  2. Department of Physics and Biophysics, University of San Diego, San Diego, CA, USA

    Aditya Sriram, Katarina Matic, Maya Hendija, Ryan J. McGorty & Rae M. Robertson-Anderson

  3. School of Physics and Astronomy, Rochester Institute of Technology, Rochester, NY, USA

    Keegan Tonry & Moumita Das

  4. Department of Physics, Syracuse University, Syracuse, NY, USA

    Jennifer L. Ross

Authors
  1. Qiaopeng Chen
    View author publications

    Search author on:PubMed Google Scholar

  2. Aditya Sriram
    View author publications

    Search author on:PubMed Google Scholar

  3. Ayan Das
    View author publications

    Search author on:PubMed Google Scholar

  4. Katarina Matic
    View author publications

    Search author on:PubMed Google Scholar

  5. Maya Hendija
    View author publications

    Search author on:PubMed Google Scholar

  6. Keegan Tonry
    View author publications

    Search author on:PubMed Google Scholar

  7. Jennifer L. Ross
    View author publications

    Search author on:PubMed Google Scholar

  8. Moumita Das
    View author publications

    Search author on:PubMed Google Scholar

  9. Ryan J. McGorty
    View author publications

    Search author on:PubMed Google Scholar

  10. Rae M. Robertson-Anderson
    View author publications

    Search author on:PubMed Google Scholar

  11. Megan T. Valentine
    View author publications

    Search author on:PubMed Google Scholar

Contributions

M.T.V. and R.M.R.A. conceived and designed the research. Q.C., A.S., A.D., K.M., M.H., K.T., R.J.M., R.M.R.A. and M.T.V. designed BARCODE algorithms, pipeline, and documentation. K.M. and M.H. performed experimental work and curated data. Q.C., A.S., A.D., R.M.R.A. and M.T.V. analyzed data. Q.C., A.S., R.M.R.A., and M.T.V. prepared figures and wrote the manuscript. M.D., R.J.M., R.M.R.A., and M.T.V. supervised the research. All authors interpreted data and edited the manuscript.

Corresponding authors

Correspondence to Rae M. Robertson-Anderson or Megan T. Valentine.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Anne Bernheim-Groswasser, Kelly Schultz and the other anonymous reviewer(s) for their contribution to the peer review of this work. [A peer review file is available].

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Reporting Summary

Transparent Peer Review file

Source data

Source Data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Q., Sriram, A., Das, A. et al. BARCODE: high throughput screening and analysis of soft active materials. Nat Commun (2025). https://doi.org/10.1038/s41467-025-67963-3

Download citation

  • Received: 24 February 2025

  • Accepted: 12 December 2025

  • Published: 31 December 2025

  • DOI: https://doi.org/10.1038/s41467-025-67963-3

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research